Proving the Equivalence of Two Formulas with e as Small

KateyLou
Messages
17
Reaction score
0

Homework Statement



Taking e to be small, we have been given these two formulas to prove

m1 = \frac{-1+\sqrt{1-4e}}{2e} = \frac{-1+(1-2e+O(e^2))}{2e} = -1+ O(e)

m2= \frac{-1-\sqrt{1-4e}}{2e} = \frac{-1-(1-2e+O(e^2))}{2e} = -1+ O(1)

Homework Equations




The Attempt at a Solution




Firstly, the second stage in each of these? I am assuming what they have done is say that
(1 - 4e) = (1 - 2e + O(e2))2
If you do this manually you get
(1 - 2e - O(e2) - 2e + 4e2 + O(e3) + O(e2) - O(e3) + O(e4))
Is this right - I am assuming O(e^2) means "some term of the order e^2

This simplifies to
(1 - 4e + O(e2) + O(e3) + O(e4)
And as e is little the O(e2) can be neglected...however if this is the case then when both including O(e2) at all??

Secondly (sorry)
breaking down the first equation is ok:
= -1/2e +1/2e - 2e/2e + O(e2)/2e
= -1 + O(e)

however breaking down the second equation
= -1/2e -1/2e +2e/2e - O(e2)/2e
= -1/e + 1 - O(e)

Our tutor said that 1 - O(e) is the same as O(1) becuase O(e) is small; but if this is so, why doesn't the first equation become -1?
 
Physics news on Phys.org
have had another go at this, and still cannot work out the first bit - the random removal of O(e^2) in some places and not others :-(
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top