Proving the Image Charge in a Metal-Sphere-Shell

  • Thread starter Thread starter bjnartowt
  • Start date Start date
  • Tags Tags
    Charge Image
bjnartowt
Messages
265
Reaction score
3

Homework Statement



You have charge inside metal-sphere-shell held at V = 0, and you know an image-charge goes outside the metal-sphere-shell to formulate the equivalent and unique potential. Oh, and the metal-sphere-shell is of radius "a". You get to the point where you superimpose the image and real charges' potentials like so:

\Phi \left( {a{\bf{\hat r}}} \right) \equiv 0 = \frac{1}{{4\pi {\varepsilon _0}}}\left( {\frac{q}{{\left| {{{{\bf{\vec r}}}_0} - {\bf{\vec r}}} \right|}} + \frac{{{q_i}}}{{\left| {{{{\bf{\vec r}}}_i} - {\bf{\vec r}}} \right|}}} \right)

in which: r-arrow is position at which potential is being considered, r[0] is position vector of original charge, and r is position vector of image charge. also: q[0] and q are the charges of real and image charges, respectively.

Prove that the charge of the image charge is:
{q_i} = - \frac{a}{{\left| {{{{\bf{\vec r}}}_i}} \right|}}

...and that the image charge is located a radial distance:
\left| {{{{\bf{\vec r}}}_i}} \right| = \frac{{{a^2}}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}

...away.


Homework Equations


uniqueness, and law of cosines. law of cosines seems key, as it is a Griffiths hint: consider it applied to one of the scalar-denominators of the superposition of potentials from (1)

\left| {{{{\bf{\vec r}}}_0} - a{\bf{\hat r}}} \right| = \sqrt {({{{\bf{\vec r}}}_0} - a{\bf{\hat r}}) \bullet ({{{\bf{\vec r}}}_0} - a{\bf{\hat r}})} = \sqrt {{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2} + {{\left| {a{\bf{\hat r}}} \right|}^2} - 2\left| {{{{\bf{\vec r}}}_0}} \right|\left| {a{\bf{\hat r}}} \right|\cos {\theta _{{{{\bf{\vec r}}}_0}{\bf{\hat r}}}}}

...in which the large "dot" denotes the scalar/dot product. Similar law-of-cosine treatment for other scalar denominator (that of the image charge):
\left| {{{{\bf{\vec r}}}_i} - a{\bf{\hat r}}} \right| = \sqrt {{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2} + {{\left| {a{\bf{\hat r}}} \right|}^2} - 2\left| {{{{\bf{\vec r}}}_i}} \right|\left| {a{\bf{\hat r}}} \right|\cos {\theta _{{{{\bf{\vec r}}}_0}{\bf{\hat r}}}}}

Also: the image charge and real charge lie along the same line as the circle’s radius, so:

{\theta _{{{{\bf{\vec r}}}_0}{\bf{\hat r}}}} = {\theta _{{{{\bf{\vec r}}}_i}{\bf{\hat r}}}} = \theta



The Attempt at a Solution



Use law of cosines in the superposition:
\begin{array}{c}<br /> {Q_i}\left| {{{{\bf{\vec r}}}_0} - a{\bf{\hat r}}} \right| = - Q\left| {{{{\bf{\vec r}}}_i} - a{\bf{\hat r}}} \right| \\ <br /> {Q_i}\sqrt {{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2} + {a^2} - 2\left| {{{{\bf{\vec r}}}_0}} \right|a\cos \theta } = - {Q_0}\sqrt {{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2} + {a^2} - 2\left| {{{{\bf{\vec r}}}_i}} \right|a\cos \theta } \\ <br /> {Q_i} = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a\cos \theta }}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\cos \theta }}} \right) \\ <br /> \end{array}

Crude approach: plug in various values of "theta", and mandate they give the same image charge potential. Let us take a walk to the line between the already-parallel r or r[0]. Now: r, our position-vector, is parallel to both r and r[0] , meaning theta -> 0 , which makes this relation just under (3) of "Attempt..." into:
{Q_i} = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a\cos 0}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\cos 0}}} \right) = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a}}} \right)

What if theta -> pi/2?

{Q_i} = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a\cos {\textstyle{\pi \over 2}}}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\cos {\textstyle{\pi \over 2}}}}} \right) = - {Q_0}\frac{{{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2}}}{{{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2}}}

Stupid! I am shy about setting something equal to anther thing...I'll prolly generate an algebra-mess.

Griffiths does say that picking image-charge magnitude and location is a bit of an art rather than a science. Sigh.
 
Physics news on Phys.org


I reached a contradiction by setting the theta -> 0 and theta -> pi/2 results equal to one another:

\begin{array}{c}<br /> \frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a}}} \right) = - \frac{{{Q_i}}}{{{Q_0}}} = \frac{{{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2}}}{{{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2}}} \\ <br /> \left( {\left| {{{{\bf{\vec r}}}_i}} \right| - 2a} \right)\left| {{{{\bf{\vec r}}}_0}} \right| = \left| {{{{\bf{\vec r}}}_i}} \right|\left( {\left| {{{{\bf{\vec r}}}_0}} \right| - 2a} \right) \\ <br /> \left| {{{{\bf{\vec r}}}_i}} \right|\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\left| {{{{\bf{\vec r}}}_0}} \right| = \left| {{{{\bf{\vec r}}}_i}} \right|\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\left| {{{{\bf{\vec r}}}_i}} \right| \\ <br /> \left| {{{{\bf{\vec r}}}_0}} \right| = \left| {{{{\bf{\vec r}}}_i}} \right| \\ <br /> \end{array}
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top