Proving the Properties of Subspace U⊥ in Rn | Help with Subspace Concepts

  • Thread starter Thread starter icystrike
  • Start date Start date
  • Tags Tags
    Subspace
icystrike
Messages
444
Reaction score
1
1. Let U be a subspace of Rn and let
U⊥ = {w ∈ Rn : w is orthogonal to U} .
Prove that
(i) U⊥ is a subspace of Rn,
(ii) dimU + dimU⊥ = n.


Attempt.


i)
U. ( U⊥)T=0
If U⊥ does not passes the origin , the above equation cannot be satisfied.
Therefore U⊥ passes the origin.
U.( U⊥+ U⊥)T=U. ( U⊥)T+U.( U⊥)T=0+0=0
U.(k U⊥)T=k[U. (U⊥)T]=k.0=0

Therefore U⊥ is a subspace in Rn

ii) let U have rank r.
U⊥ is the nullspace of the U transpose.
and if U is a matrix of mxn , UT is nxm.
Therefore , the sum of dim of the two matrices is exactly n.
 
Physics news on Phys.org
I don't understand your notation. You use "T" which I guess is "transpose" and talk about U being a matrix. U is given as a subspace, not a matrix.
 
HallsofIvy said:
I don't understand your notation. You use "T" which I guess is "transpose" and talk about U being a matrix. U is given as a subspace, not a matrix.

yup you are right.. it is transpose and subspace..
 
icystrike said:
1. Let U be a subspace of Rn and let
U⊥ = {w ∈ Rn : w is orthogonal to U} .
Prove that
(i) U⊥ is a subspace of Rn,
(ii) dimU + dimU⊥ = n.


Attempt.


i)
U. ( U⊥)T=0
If U⊥ does not passes the origin , the above equation cannot be satisfied.
Therefore U⊥ passes the origin.
U.( U⊥+ U⊥)T=U. ( U⊥)T+U.( U⊥)T=0+0=0
U.(k U⊥)T=k[U. (U⊥)T]=k.0=0

Therefore U⊥ is a subspace in Rn

ii) let U have rank r.
U⊥ is the nullspace of the U transpose.
and if U is a matrix of mxn , UT is nxm.
Therefore , the sum of dim of the two matrices is exactly n.


Let u,v be in U⊥. Let k be a constant in R.
Now <u,w>=0 for all w in U and <v,w>=0 for all w in U.
Thus by linearity of inner product we have <u+kv,w>=0 for all w in U. Thus, u+kv is also in U⊥ for all u,v,k. Thus U⊥ is a subspace.

For the second part, DIY but here are some hints:
- We know that U \cap U⊥ = {0}. Easy to check (if a vector is in U and perpendicular to U then it has to be the zero vector).
- Take x in Rn. Prove that x = u+u' for u in U and u' in U⊥.
- This is unique representation. If x = u+u' = v+v' with u,v in U and u',v' in U⊥ then 0 = (u-v)+(u'-v') implies u-v = v'-u' implies u-v = v'-u' = 0 since U \cap U⊥ = {0}. Thus u=v and u'=v'.
- Thus projection map \pi: Rn -->> U defined by \pi(x)=u where x = u+u' with u in U and u' in U⊥.
- Use Isomorphism theorem corollary (that dim(range)+dim(kernel)=dim(Rn)=n)
 
adityab88 said:
Let u,v be in U⊥. Let k be a constant in R.
Now <u,w>=0 for all w in U and <v,w>=0 for all w in U.
Thus by linearity of inner product we have <u+kv,w>=0 for all w in U. Thus, u+kv is also in U⊥ for all u,v,k. Thus U⊥ is a subspace.

For the second part, DIY but here are some hints:
- We know that U \cap U⊥ = {0}. Easy to check (if a vector is in U and perpendicular to U then it has to be the zero vector).
- Take x in Rn. Prove that x = u+u' for u in U and u' in U⊥.
- This is unique representation. If x = u+u' = v+v' with u,v in U and u',v' in U⊥ then 0 = (u-v)+(u'-v') implies u-v = v'-u' implies u-v = v'-u' = 0 since U \cap U⊥ = {0}. Thus u=v and u'=v'.
- Thus projection map \pi: Rn -->> U defined by \pi(x)=u where x = u+u' with u in U and u' in U⊥.
- Use Isomorphism theorem corollary (that dim(range)+dim(kernel)=dim(Rn)=n)


Hmm.. i think for part 2 i can explain by stating that dim(U+U⊥)=dim(U)+dim(U⊥)+dim(U\cap U⊥)
Rn=dim(U)+dim(U⊥)
since dim(U\cap U⊥) ought to be atleast {0} to satisfy the condition of subspace , and all the more they are orthogonal to one another , the can't be parallel , thus they have to be {0} itself.
Hence proving part 2.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top