Proving the Relationship between Cosine and Inverse Sine Functions

  • Context: MHB 
  • Thread starter Thread starter Wild ownz al
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around proving relationships between cosine and inverse sine functions, specifically focusing on two equations: (a) cos(sin-1x) = √(1-x2) and (b) cos-1a + cos-1b = cos-1(ab - √(1-a2)√(1-b2)). The scope includes mathematical reasoning and exploration of trigonometric identities.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Technical explanation

Main Points Raised

  • Some participants propose using the identity cos2θ + sin2θ = 1 to derive the first equation.
  • It is noted that sin2(sin-1x) = x2, leading to cos2(sin-1x) = 1 - x2, which implies cos(sin-1x) = √(1-x2).
  • Participants discuss the importance of taking the positive square root due to the range of sin-1x.
  • For the second equation, one participant suggests letting θ = cos-1a and φ = cos-1b, leading to the expression cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ).
  • Another participant points out a potential error in the original formulation of the second equation, indicating a missing equals sign.
  • Clarifications are made regarding the relationship between sin and sin-1 as inverse functions, emphasizing that sin(sin-1x) = x for -1 ≤ x ≤ 1.

Areas of Agreement / Disagreement

Participants express confusion and seek clarification on the steps taken in the proofs, indicating that there is no consensus on the approach to the second equation. Multiple viewpoints on the manipulation of the equations are present, and the discussion remains unresolved.

Contextual Notes

There are unresolved issues regarding the manipulation of the equations and the clarity of the steps taken by participants. The discussion also highlights the dependence on the definitions of inverse functions and trigonometric identities.

Wild ownz al
Messages
30
Reaction score
0
Prove:

a) cos(sin-1x) = √(1-x2)

b) cos-1a+cos-1​b = cos-1(ab-√(1-a2)√(1-b2) (edited)

(VERY HARD)
 
Last edited:
Physics news on Phys.org
Hi Wild ownz al.

Try using the identity $\cos^2\theta+\sin^2\theta=1$.

(a) We have $\sin^2(\sin^{-1}x)=x^2$ and so
$$\cos^2(\sin^{-1}x)\ =\ 1-\sin^2(\sin^{-1}x)\ =\ 1-x^2$$

$\implies\ \cos(\sin^{-1}x)\ =\ \sqrt{1-x^2}$

taking the positive square root because the range of $\sin^{-1}x$ (for $-1\le x\le1$) is $\displaystyle\left[-\frac{\pi}2,\,\frac{\pi}2\right]$ on which the cos function takes non-negative values.

(b) Check your equation. There should be an equals (“=”) sign, which is missing.
 
Olinguito said:
Hi Wild ownz al.

Try using the identity $\cos^2\theta+\sin^2\theta=1$.

(a) We have $\sin^2(\sin^{-1}x)=x^2$ and so
$$\cos^2(\sin^{-1}x)\ =\ 1-\sin^2(\sin^{-1}x)\ =\ 1-x^2$$

$\implies\ \cos(\sin^{-1}x)\ =\ \sqrt{1-x^2}$

taking the positive square root because the range of $\sin^{-1}x$ (for $-1\le x\le1$) is $\displaystyle\left[-\frac{\pi}2,\,\frac{\pi}2\right]$ on which the cos function takes non-negative values.

(b) Check your equation. There should be an equals (“=”) sign, which is missing.


Hey Olinguito,

I'm a bit confused as to your steps...did you manipulate the left hand side or the right hand side? Also could you start from the given equation? I corrected part b). Thanks.
 
Wild ownz al said:
Prove:

a) cos(sin-1x) = √(1-x2)

b) cos-1a+cos-1​b = cos-1(ab-√(1-a2)√(1-b2) (edited)

(VERY HARD)

(b) let $\theta = \cos^{-1}{a} \implies \cos{\theta} = a \text{ and } \sin{\theta} = \sqrt{1-a^2}$,

also, let $\phi = \cos^{-1}{b} \implies \cos{\phi} = b \text{ and } \sin{\phi} = \sqrt{1-b^2}$$\cos(\theta + \phi) = \cos{\theta}\cos{\phi} - \sin{\theta}\sin{\phi}$

$\cos(\theta + \phi) = ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}$

$\cos^{-1}\left[\cos(\theta + \phi)\right] = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$

$\theta + \phi = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$

$\cos^{-1}{a} + \cos^{-1}{b} = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$
 
Wild ownz al said:
I'm a bit confused as to your steps...did you manipulate the left hand side or the right hand side? Also could you start from the given equation? I corrected part b). Thanks.

Note that the $\sin$ and $\sin^{-1}$ are inverse functions.

For example, $\sin^{-1}\dfrac12=\dfrac{\pi}6$ and $\sin\dfrac{\pi}6=\dfrac12$; that is to say, $\sin\left(\sin^{-1}\dfrac12\right)=\dfrac12$.

Thus we have $\sin(\sin^{-1}x)=x$ for $-1\le x\le1$.

The rest of my post should be straightforward.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K