Proving the Uniqueness of a Fixed Point for a Differentiable Function

dancergirlie
Messages
194
Reaction score
0

Homework Statement


Let f : (a, b)--> R be differentiable on (a,b), and assume that f'(x) unequal 1 for all x in (a,b).
Show that there is at most one point c in (a,b) satsifying f(c) = c.


Homework Equations





The Attempt at a Solution



I think that We need to use the mean value theorem for this problem.

This is what I know, but I'm not sure what I should use for my proof:
If we let c be n (a,b)
By definition f'(c)=lim: x-->c (f(x)-f(c)/x-c) assuming that f(x) is differentiable at c.

Also, the mean value theorem states that f[a,b]-->R is continuous on [a.b] and differentiable on (a,b), then there exists a point c in (a,b) so that f'(c)=f(b)-f(a)/b-a

Any help/hints would be great!
 
Physics news on Phys.org
Use a proof by contradiction. Suppose there are two points d and e in (a,b), where f(d)=d and f(e)=e. Then what does the mean value theorem tell you if you apply it on the interval [d,e]?
 
Thanks so much for the help!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top