- #1
- 2,076
- 140
Homework Statement
Suppose that ##s_n(x)## converges uniformly to ##s(x)## on ##[b, ∞)##.
If ##lim_{x→∞} s_n(x) = a_n## for each n and ##lim_{n→∞} a_n = a## prove that :
##lim_{x→∞} s(x) = a##
Homework Equations
##\space ε/N##
The Attempt at a Solution
I see a quick way to do this one using first principle definitions.
##\forall ε>0, \exists N(ε) \space | \space n > N(ε) \Rightarrow |s_n(x) - s(x)| < ε/3, \space \forall x \in [b, ∞)##
##\forall ε>0, \exists N_1 \space | \space x > N_1 \Rightarrow |s_n(x) - a_n| < ε/3##
##\forall ε>0, \exists N_2 \space | \space n > N_2 \Rightarrow |a_n - a| < ε/3##
We want to prove :
##\forall ε>0, \exists N \space | \space x > N \Rightarrow |s(x) - a| < ε##
So :
##|s(x) - a| = |s(x) - s_n(x) + s_n(x) - a_n + a_n - a| ≤ |s_n(x) - s(x)| + |s_n(x) - a_n| + |a_n - a| < ε/3 + ε/3 + ε/3 = ε##
Does this look okay?