solakis
- 19
- 0
Given the following :
1)\forall x\forall y\forall z G(F(F(x,y),z),F(x,F(y,z)))
2)\forall xG(F(x,c),x)
3)\forall x\exists yG(F(x,y),c)
4)\forall x\forall yG(F(x,y),F(y,x)).
5) \forall x\forall y\forall z ( G(x,y)\wedge G(x,z)\Longrightarrow G(y,z))
Where G is a two place predicate symbol. F ,is a two place term symbol and c is a constant.
Prove :\exists! y\forall xG(F(x,y),x)
\exists ! y means : there exists a unique y
1)\forall x\forall y\forall z G(F(F(x,y),z),F(x,F(y,z)))
2)\forall xG(F(x,c),x)
3)\forall x\exists yG(F(x,y),c)
4)\forall x\forall yG(F(x,y),F(y,x)).
5) \forall x\forall y\forall z ( G(x,y)\wedge G(x,z)\Longrightarrow G(y,z))
Where G is a two place predicate symbol. F ,is a two place term symbol and c is a constant.
Prove :\exists! y\forall xG(F(x,y),x)
\exists ! y means : there exists a unique y