Proving Vector Space Relationships in WU{A} and WU{B}

LAINHELL
Messages
1
Reaction score
0
Hi, I need help with this:

Let V be a vector space (V may be infinite) and let W be a subspace of V, if "B" is a vector in V that doesn't belong to W, prove that if "A" is a vector in V such that "B" exists in the subspace WU{A} then "A" exists in the subspace WU{B}.

I also have a question, can a subspace W of an infinite vector space be infinite?

thanks.
 
Physics news on Phys.org
Tacking on a single vector (or even a 1-dimensional subspace) onto a subspace via set union doesn't give you another subspace. Your question probably wanted W+<A> where + is vector space addition (all vectors of the form w+a, w in W and a in span{A})
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top