Proving (x^3)=2 using least upper bound

  • Thread starter Thread starter psb01080
  • Start date Start date
  • Tags Tags
    Bound Upper bound
psb01080
Messages
2
Reaction score
0
Okay, my homework is "Prove that there exists a positive real number x such that (x^3)=2."
and I have no clue how I can solve it. sigh.

Is there anyone who can me to solve it using least upper bound property??

Thank you !
 
Physics news on Phys.org
Define f(x) such thatf(x)=x^3-2.

f(x) is continuous because it is a polynomial (you can prove this if you like).

f(1)=1-2=-1<0
f(2)=8-2=6>0

By the Intermediate value Theorem, \exists \ x_0 \in \mathbb{R} \ s.t \ f(x_0)=0.

Hence x_0^3-2=0 so x_0^3=2.
 
Another way: Let A= { x| x3< 2}. That set has 2 as an upper bound: 23= 8> 2 and if x> 2, x3> 23> 2. By the LUB property this set has a LUB, say, a. 1.43= 2.744 and 1.453= 3.05 so a is between 1.4 and 1.45. If a2< 2, let d= 2- a3 (so d< 2-1.4= 0.6) and look at a+d/5. (a+ d/5)3= a3+ 3(d/5)a2+ 3(d2/25)a+ d3/125= a3+ d((3/5)a2+ (3/25)da+ d2). Use the bounds on a and d to show that ((3/5)a2+ (3/25)da+ d2)< 1. That tells you that a3 cannot be less than 2. Similarly, assume a3> 2 and show that that leads to a contradiction.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top