sid9221
- 110
- 0
http://dl.dropbox.com/u/33103477/prune.png
I am unsure if the the answer is:
{\begin{pmatrix}<br /> 2 & 1 \\ <br /> 5 & 1<br /> \end{pmatrix}},<br /> {\begin{pmatrix}<br /> 3 & -1 \\ <br /> 7 & 4<br /> \end{pmatrix}}
or
{\begin{pmatrix}<br /> 2 & 1 \\ <br /> 5 & 1<br /> \end{pmatrix}},<br /> {\begin{pmatrix}<br /> 3 & -1 \\ <br /> 7 & 4<br /> \end{pmatrix}},<br /> {\begin{pmatrix}<br /> 2 & 7 \\ <br /> -4 & 1<br /> \end{pmatrix}}
I'm pretty sure it's the second one but am a bit confused about when the algorithm stops.
Can someone confirm the answer ?
I am unsure if the the answer is:
{\begin{pmatrix}<br /> 2 & 1 \\ <br /> 5 & 1<br /> \end{pmatrix}},<br /> {\begin{pmatrix}<br /> 3 & -1 \\ <br /> 7 & 4<br /> \end{pmatrix}}
or
{\begin{pmatrix}<br /> 2 & 1 \\ <br /> 5 & 1<br /> \end{pmatrix}},<br /> {\begin{pmatrix}<br /> 3 & -1 \\ <br /> 7 & 4<br /> \end{pmatrix}},<br /> {\begin{pmatrix}<br /> 2 & 7 \\ <br /> -4 & 1<br /> \end{pmatrix}}
I'm pretty sure it's the second one but am a bit confused about when the algorithm stops.
Can someone confirm the answer ?
Last edited by a moderator: