Pseudoinverse - change of basis?

kviksand81
Messages
5
Reaction score
0
Hello,

I was wondering if the pseudoinverse can be considered a change of basis?

If an m x n matrix with m < n and rank m and you wish to solve the system Ax = b, the solution would hold an infinite number of solutions; hence you form the pseudoinverse by A^T(A*A^T)^-1 and solve for x to get the minimum norm solution. And since A was the original basis the pseudoinverse must be a new basis...? Or am I getting it all wrong?

 
Physics news on Phys.org
I don't understand what you mean by "since A was the original basis the pseudoinverse must be a new basis". A matrix is NOT a "basis". A basis is a collection of vectors, not a matrix or linear transformation. A linear transformation is represented by a matrix using a specific basis but finding the generalized inverse does not change the basis.
 
Sorry. From the original problem where m < n, there is not a set of linearly independent vectors to yield a exact solution to the system Ax = b. Then a common technique to solve for a vector that comes as close as possible, would be to form the pseudoinverse, right? This pseudoinverse, is that a new basis or what is it?

Hope that it is more clear what I mean now! :-)

 
No, a basis, for a given vector space, is a set of vectors that span the vector space and are independent so what you are describing is not a basis.
 
Ok.

If I then solve the system Ax =b where the matrix A (m x n) with rank m by means of the right-hand pseudo inverse A^T(A*A^T)^-1, what I get is the minimum norm solution to the m independent columns of A? Or...?

What happens to the remaining free variables? Are they in the null-space?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top