A Pullback of F on Manifolds: What Matrix Do We Take Determinant Of?

  • A
  • Thread starter Thread starter Rico1990
  • Start date Start date
  • Tags Tags
    Manifold
Rico1990
Messages
3
Reaction score
0
Hey,
we had in the lecures the following:
Let M and N be smooth manifolds, and dim(M)=dim(N)=n, while $$x^i$$ and $$ y^i$$ are coordinate functions around $$p\in M$$ respective $$F(p) \in N$$, then we get for the pullback of F
Untitled01.jpg

Which entries has the matrix we take the determinant of? I thaught of partial derivatives but am not sure.
 

Attachments

  • Untitled01.jpg
    Untitled01.jpg
    6.3 KB · Views: 953
Physics news on Phys.org
Yes it is the partial derivatives of ##y^j \circ F## with respect to ##x^i##, which is what the image you pasted says. This is just the Jacobian of the transformation ##x^i \to y^j## as subsets of ##\mathbb R^n##.
 
Ok, thank you for your answer. But answer me please two last questions that arose. I deduce that these partial derivatives are defined, but they are vague in the sense, that $$x^i , y^i$$ are both functions the derivatives depend on. Is it the interest to leave them this vague or does one insert certain values so that the coordinate functions give „real" coordinates.
What is the use of this formula?

Best wishes Rico
 
Back
Top