A Purification of a Density Matrix

Pete5876
Messages
7
Reaction score
0
I'm trying to find the purification of this density matrix
$$\rho=\cos^2\theta \ket{0}\bra{0} + \frac{\sin^2\theta}{2} \left(\ket{1}\bra{1} + \ket{2}\bra{2} \right)
$$

So I think the state (the purification) we're looking for is such Psi that
$$
\ket{\Psi}\bra{\Psi}=\rho
$$

But I'm not confident this is right because this would involve considering a generic state Psi, multiplying it with its bra and equating the coefficients which is too complicated to be right.

How do you "purify" a mixed state expressed as a density matrix?
 
Physics news on Phys.org
There is a substantial body of literature on this. Have you consulted that literature and if so what conclusions have you drawn?
 
I did and as you pointed out there is a substantial body of literature. I'm a slow reader and an even slower learner. We don't go by any textbook at uni and I have no idea what purification might possibly entail.

After all, we're not tensor-crossing with any other space so tracing one space out of another can't even be applied. What could they possibly mean by "purification"?
 
First of all you should check whether ##\hat{\rho}## is a pure state to begin with. It's a pure state if and only if ##\hat{\rho}^2=\hat{\rho}##!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top