Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Putting phase factor in amplitude in Lorentz oscillator

  1. Jun 22, 2013 #1
    Hi there,

    In my course solid state physics, there is a part about the Lorentz oscillator. At a certain part, this is written:

    "X(t) = X_0sin(-ωt+α)

    This changes into:

    X(t) = X_0 exp(-iωt)

    by choosing X_0 as a complex number and putting the phase factor into the complex amplitude."

    But I just don't see how you can do/prove this mathematically?
  2. jcsd
  3. Jun 22, 2013 #2
    Those two things aren't mathematically equivalent. They're using the Euler formula, [itex]e^{-i\omega t} = \cos(\omega t) + i \sin(-\omega t)[/itex] and making the assumption that at the end of the day, you'll take the imaginary part of X(t) to get the actual value for the Lorentz oscillator. This is done because it is often more convenient to work with exponentials than trig functions.

    To answer your second question, if [itex]X_0 = |X_0|e^{i\alpha}[/itex] is complex, then you have
    [tex]X(t) = |X_0|e^{i\alpha} e^{-i \omega t}[/tex]
    [tex]X(t) = |X_0| e^{-i \omega t + \alpha}[/tex]
    and if you take the imaginary part then you have
    [tex]X(t) = |X_0| \sin(-\omega t + \alpha)[/tex]
  4. Jun 24, 2013 #3
    Thanks for the clear answer! :)
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook