MHB Q-Gamma Function: Proving Limit & Definition

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
The discussion focuses on defining the q-Gamma function, expressed as Γ_q(x), and proving its limit as q approaches 1 from the left, which converges to the classical Gamma function, Γ(x). The q-beta function, B_q(x,y), is introduced, requiring a similar limit proof. The proof begins with the factorial representation, showing that the limit of the ratio of infinite products converges to (k-1)!. The discussion emphasizes the analytic continuation of results to establish these limits effectively. The mathematical derivations and limits are critical for understanding the relationship between q-functions and classical functions.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Let us define the following

$$\Gamma_q(x) = \frac{(q;\, q)_{\infty}}{(q^x;\,q)_{\infty}}(1-q)^{1-x}$$

Prove that

$$\lim_{q \to 1^-}\Gamma_q(x)=\Gamma(x)$$​

Naturally the q-beta function is defined as

$$B_q(x,y) = \frac{\Gamma_q(x)\Gamma_q(x)}{\Gamma_q(x+y)}$$
 
Mathematics news on Phys.org
We need to prove that

$$\lim_{q \to 1^-} \frac{(q;\, q)_{\infty}}{(q^x;\,q)_{\infty}}(1-q)^{1-x}=\Gamma(x)$$

But first we start by working on the factorial then we extend the result by analytic continuation . So we need to prove

$$\lim_{q \to 1^-} \frac{(q;\, q)_{\infty}}{(q^k;\,q)_{\infty}}(1-q)^{1-k}=(k-1)!$$

Start by

$$\frac{(q;\, q)_{\infty}}{(q^k;\,q)_{\infty}} = \prod_{n\geq 0}\frac{(1-q^{n+1})}{(1-q^{k+n})}= (1-q)(1-q^2)\cdots(1-q^{k-1})$$

So we get

$$\lim_{q \to 1^-}\frac{(1-q)(1-q^2)\cdots(1-q^{k-1})}{(1-q)^{k-1}} =\lim_{q \to 1^-} \frac{(1-q)(1-q^2)\cdots(1-q^{k-1})}{(1-q)(1-q)\cdots(1-q)}=(k-1)!$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
3
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
12
Views
2K
Back
Top