losang said:
Why is local gauge invariance needed in qft? I read that is allows interactions whereas global gauge invariance does not but was given no reason.
Why it is needed we don't know :)
Take the case of QED. If we take a look at the Lagrangian for a free fermion and a free electromagnetic field, we see two symmetries: a gauge symmetry of the vector potential, and a phase symmetry of the fermion; we can shift the fermion field by a constant phase without altering the equation. This is a global symmetry. However, the gauge symmetry of the electromagnetic field is local; it's just the derivative of some scalar function.
So that makes you wonder: what happens if I promote the global symmetry of the fermion field to a local symmetry? In doing this, we can easily see that the derivative term in the Lagrangian spoils the invariance. This is not hard to understand; in a derivative we take the difference of fields at two different coordinates, and these two quantities transform differently. So we introduce some sort of connection; it's a correction term with which we make the Lagrangian invariant under local fermionic phase transformations (U(1) transformations) and see what happens. If we work this out, this correction term appears to transform exactly like the vector potential!
So, we introduced the interaction between electromagnetic fields and fermions by promoting a global symmetry to a local one. In general relativity we do the same thing: we need a directional derivative which transforms properly under coordinate transformations. For this we need a connection, and with some variational arguments we see that this connection is constructed out of the metric and its first derivative. The metric is just the gravitational potential in general relativity, so we could say that by demanding the equations of motion to be covariant with a dynamical space-time, we introduced the force field of gravity.
Ofcourse, in the QED case the transformations take place in some abstract inner space, while in general relativity we work in space-time. But the idea is the same.
Why this description works? I don't have a clue. But it appears that this gives a very nice way of describing interactions, also in the standard model. Because this idea can easily be extended to more complicated (Non-Abelian) transformations like SU(2) or SU(3), and these result in the weak and strong forces.