Relativistically covariant quantized Schrödinger equation...
I note that in the Schrödinger equation, when momentum is zero, the energy is also zero. This equation does not account for the particle rest energy. This is why this equation is not relativistically covariant and is not invariant under a Lorentz transformation.
Schrödinger equation for a free particle is:
- \frac{\hbar^2}{2m} \nabla^2 \ \psi = i \hbar\frac{\partial}{\partial t} \psi
\boxed{\nabla = 0 \; \; \; i \hbar\frac{\partial}{\partial t} \psi = 0}
However, for the Klein–Gordon equation, when momentum is zero, energy is equivalent to the particle rest energy.
Klein–Gordon equation is:
- \hbar^2 c^2 \mathbf{\nabla}^2 \psi + m^2 c^4 \psi = - \hbar^2 \frac{\partial^2}{(\partial t)^2} \psi
\nabla = 0 \; \; \; \hbar^2 \frac{\partial^2}{(\partial t)^2} \psi = m^2 c^4 \psi
\boxed{\nabla = 0 \; \; \; i \hbar\frac{\partial}{\partial t} \psi = m c^2 \psi}
m = 0 \; \; \; - \hbar^2 c^2 \mathbf{\nabla}^2 \psi = - \hbar^2 \frac{\partial^2}{(\partial t)^2} \psi
\boxed{m = 0 \; \; \; - i \hbar c \nabla \psi = i \hbar\frac{\partial}{\partial t} \psi}
Therefore, the equation I derived for a relativistically covariant Schrödinger equation:
- \frac{\hbar c}{\overline{\lambda}} \nabla \psi + mc^2 \psi = i \hbar\frac{\partial}{\partial t} \psi
\boxed{\nabla = 0 \; \; \; i \hbar\frac{\partial}{\partial t} \psi = m c^2 \psi}
Relativistically covariant quantized Schrödinger equation:
\boxed{- i \hbar c \nabla \psi + mc^2 \psi = i \hbar\frac{\partial}{\partial t} \psi}
\boxed{m = 0 \; \; \; - i \hbar c \nabla \psi = i \hbar\frac{\partial}{\partial t} \psi}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Free_particle#Non-Relativistic_Quantum_Free_Particle"
http://en.wikipedia.org/wiki/Klein-Gordon_equation#Derivation"