QFT question about using momentum raising and lowering operators

arnshch
Messages
2
Reaction score
0
How did you find PF?: Google

I know how to express Hamiltonian for scalar field written in field operators through the raising and lowering momentum operators, but I can't figure out how to do the same for the number of particles written in field operators: the 1/2E coefficient within the corresponding integral, doesn't go away in the latter expression, as it does in the former one, and I cannot figure out how to deal with it. Any advise?
 
Physics news on Phys.org
Sorry, I actually want to do the opposite: from the number of particles written through momentum raising and lowering operators to the same number expressed in field operators.
 
Start with $$\phi(\vec {x})=\int \frac{d^{3}k}{\sqrt{2 \omega_k}} a_k ~e^{i \vec{k} \cdot \vec{x}}+ a_k^\dagger~e^{-i \vec{k} \cdot \vec{x}}$$ $$\pi(\vec {x})=-i\int d^{3}k \sqrt{\frac{\omega_k}{2}} a_k ~e^{i \vec{k} \cdot \vec{x}}- a_k^\dagger~e^{-i \vec{k} \cdot \vec{x}}$$ and invert these, should be straightforward from there.
 
I'm not sure about what the OP's question is. I'd recommend to start with a finite volume with periodic boundary conditions on the fields (operators) to get rid of all kinds of problems with ##\delta## distributions.

Then it depends on how you normalize your annihilation-creation operators in the mode decomposition, which factors enter into the "number operators". If you want to get the simple relation ##\hat{N}(\vec{k},\sigma)=\hat{a}^{\dagger}(\vec{x}) \hat{a}(\vec{x})## you have to normalize by the (anti-)commutator relations
$$[\hat{a}(\vec{k}),\hat{a}^{\dagger}(\vec{k}')]_{\pm}=\delta_{\vec{k},\vec{k'}},$$
where here in the finite volume limit we have Kronecker-##\delta##'s.

Then for the non-interacting particles you get
$$\hat{H}=\sum_{\vec{k}} \vec{k} \hat{N}(\vec{k}), \hat{\vec{P}}=\sum_{\vec{k}} \vec{k} \hat{N}(\vec{k})$$
etc.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
2
Views
1K
Replies
4
Views
3K
Replies
8
Views
4K
Replies
1
Views
2K
Replies
5
Views
3K
Replies
12
Views
3K
Back
Top