Species8472
- 4
- 0
I have a hamiltonian:
H = J\left(\frac{1}{2\hbar^2}S_{tot}^2 - \frac{9}{8}\right)
where S_{tot} = S_1 + S_2 + S_3
for 3 spin half particles in a cluster. The magnetic properties are governed entirely by their spin.
I have set up the possible spin combinations from Clebsch-Gordan to be:
From extending the triplet |1\;1\rangle, |1\;0\rangle, |1\;-1\rangle in two spin half particles with an additional particle I get:
<br /> \newcommand{\ket}[1]{\left|#1 \right\rangle}<br /> \begin{array}{lll}<br /> \left.<br /> \begin{array}{l}<br /> \ket{\frac{3}{2}\;\frac{3}{2}} \\<br /> \ket{\frac{3}{2}\;\frac{1}{2}} \\<br /> \ket{\frac{3}{2}\;-\frac{1}{2}} \\<br /> \ket{\frac{3}{2}\;-\frac{3}{2}}<br /> \end{array}<br /> \right\}<br /> &\mbox{quadruplet} & s=3/2 \\<br /> \\<br /> \left.<br /> \begin{array}{l}<br /> \ket{\frac{1}{2}\;\frac{1}{2}}_1 \\<br /> \ket{\frac{1}{2}\;-\frac{1}{2}}_1<br /> \end{array}<br /> \right\}<br /> &\mbox{dublet} & s=1/2<br /> \end{array}<br />
From extending the singlet |0\;0\rangle in two particles with another particle I get:
<br /> \newcommand{\ket}[1]{\left|#1 \right\rangle}<br /> \begin{array}{lll}<br /> \left.<br /> \begin{array}{l}<br /> \ket{\frac{1}{2}\;\frac{1}{2}}_2 \\<br /> \ket{\frac{1}{2}\;-\frac{1}{2}}_2<br /> \end{array}<br /> \right\}<br /> &\mbox{dublet} & s=1/2<br /> \end{array}<br />
Now as you can see I have 4 states for S=3/2 and 4 states for S=1/2. Now my question is, does the 4 states for S=1/2 translate into a degeneracy of 4 for the energy eigenvalue in the equation:
H|s\;m\rangle = E|s\;m\rangle
??
H = J\left(\frac{1}{2\hbar^2}S_{tot}^2 - \frac{9}{8}\right)
where S_{tot} = S_1 + S_2 + S_3
for 3 spin half particles in a cluster. The magnetic properties are governed entirely by their spin.
I have set up the possible spin combinations from Clebsch-Gordan to be:
From extending the triplet |1\;1\rangle, |1\;0\rangle, |1\;-1\rangle in two spin half particles with an additional particle I get:
<br /> \newcommand{\ket}[1]{\left|#1 \right\rangle}<br /> \begin{array}{lll}<br /> \left.<br /> \begin{array}{l}<br /> \ket{\frac{3}{2}\;\frac{3}{2}} \\<br /> \ket{\frac{3}{2}\;\frac{1}{2}} \\<br /> \ket{\frac{3}{2}\;-\frac{1}{2}} \\<br /> \ket{\frac{3}{2}\;-\frac{3}{2}}<br /> \end{array}<br /> \right\}<br /> &\mbox{quadruplet} & s=3/2 \\<br /> \\<br /> \left.<br /> \begin{array}{l}<br /> \ket{\frac{1}{2}\;\frac{1}{2}}_1 \\<br /> \ket{\frac{1}{2}\;-\frac{1}{2}}_1<br /> \end{array}<br /> \right\}<br /> &\mbox{dublet} & s=1/2<br /> \end{array}<br />
From extending the singlet |0\;0\rangle in two particles with another particle I get:
<br /> \newcommand{\ket}[1]{\left|#1 \right\rangle}<br /> \begin{array}{lll}<br /> \left.<br /> \begin{array}{l}<br /> \ket{\frac{1}{2}\;\frac{1}{2}}_2 \\<br /> \ket{\frac{1}{2}\;-\frac{1}{2}}_2<br /> \end{array}<br /> \right\}<br /> &\mbox{dublet} & s=1/2<br /> \end{array}<br />
Now as you can see I have 4 states for S=3/2 and 4 states for S=1/2. Now my question is, does the 4 states for S=1/2 translate into a degeneracy of 4 for the energy eigenvalue in the equation:
H|s\;m\rangle = E|s\;m\rangle
??