Qual Problem: When do Matrices Commute?

  • Thread starter Thread starter tornado28
  • Start date Start date
  • Tags Tags
    Commute Matrices
tornado28
Messages
14
Reaction score
0
I'm preparing for a qualifying exam and this problem came up on a previous qual:

Let A and B be nxn matrices. Show that if A + B = AB then AB=BA.
 
Physics news on Phys.org
Hint: Consider (A-I)(B-I), where I is the nxn identity matrix.
 
Thanks morphism!

(A-I)(B-I) = AB-A-B+I = AB-AB+I=I. Therefore B-I is the inverse of A-I so we have that I=(B-I)(A-I) = BA-A-B+I = BA-AB+I. Thus BA-AB = 0 as needed.

How did you know to write it that way? Also, do you know any good general conditions related to matrices which commute? What is necessary for AB=BA? What (other than A+B=AB) is sufficient for AB=BA?
 
Last edited:
I wrote it that way after fidgeting around with A+B=AB for a while. If you rewrite this as A+B-AB=0 then you might try to factor out A or B to get A(I-B)+B=0 or B(I-A)+A=0. The symmetry inspired me to subtract I from both sides of the first equation to get A(I-B)+B-I=-I <=> A(I-B)-(I-B)=-I <=> (I-A)(I-B)=I.

As for your other questions, I can't think of anything useful off the top of my head.
 
Thanks. I found another thread with information about when matrices commute. Apparently two matrices commute iff they're simultaneously diagonalizable.
 
tornado28 said:
Thanks. I found another thread with information about when matrices commute. Apparently two matrices commute iff they're simultaneously diagonalizable.
That's only true if the two matrices are diagonalizable to begin with! :)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top