To answer that, you have to say what you mean by that it did happen, or that it did not happen, and make either a scientific statement. Be completely specific about what you mean by the words.
That which we observe, like the Earth, the nearby stars, the Hubble law in near the local group of galaxies. Those are all things of significant certainty in astronomy. Going further, and back in time, the uncertainties grow, we have event horizons, dark matter, dark energy, inflation, the Planck scale, etc. What initial event are you talking about? What testable and objectively verifiable scientific model includes such a thing, or rules out such a thing?
Even if you have a steady-state model, and you demonstrate that it agrees with all observations, it is pure pseudoscience to extend that model to a time of negative infinity. It simply isn't what you can use a model to do, and still be doing science.Yet that's just what I'm talking about-- if one does not think scientifically about what the purpose of a model is, then one takes a very black-or-white view of what a model is doing. So either the universe began in some singularity, or else it existed forever, and either of those possibilities makes perfect sense, regardless of whether or not we have any means of making any observations that could ever rule either one out. What's more, if we find evidence that some set of equations seems to resonate better with our current prejudices, this means Hoyle was right after all. The idea of universal inflation has been around for much longer than these "quantum corrections", and universal inflation has an infinitely old universe also, in something much closer to a steady-state model.