Quantum mechanics is not weird (locality and non-locality weirdness)

zonde
Gold Member
Messages
2,960
Reaction score
224
bhobba said:
That transformations between pure states should be continuous is highly intuitive
Let's be fair, it's not true.
Pure states are the ones that correspond to exact physical states. And it is not intuitive that exact physical states should transform continuously. Our belief about outcome can transform continuously but belief does not correspond to pure state.
 
Physics news on Phys.org
The weirdness of QM goes away as soon as one accepts that there are quantum objects. All instances of weirdness arise from thinking classically about things that behave quantum mechanically. The existence of quantum objects is not inherently weirder than the existence of classical objects. Even if the world were purely classical, the fact that there are (classical) electrons and they seem to carry something like an electric charge for instance also needs to be accepted by us and there is no deeper explanation for it (so far). The amount of belief that is needed to accept charged classical particles is exactly as high as the amound of belief that is required to accept the existence of quantum objects. The behaviour of quantum objects is just farther from our daily experience. Finding QM weirder than CM is therefore very anthropocentric. Would anyone find QM weird, if we had grown up in a world, where quantum effects were ubiquitous in our daily experience?
 
  • Like
Likes Einstein_D_Pung, Greg Bernhardt and Mentz114
zonde said:
And it is not intuitive that exact physical states should transform continuously.
As an example say we analyze situation where two persons are in single room and we ask what is probability that one person or the other will come out first. There are two pure states: first person comes out first and second person comes out first. And we claim that there is transformation where half first/half second person comes out first.
 
rubi said:
The weirdness of QM goes away as soon as one accepts that there are quantum objects. All instances of weirdness arise from thinking classically about things that behave quantum mechanically.
Weirdness of entanglement does not go away if you think only about detection records of entangled particles as classical objects. Would you claim that detection records behave quantum mechanically (a la Schrodinger's cat)?
 
zonde said:
Weirdness of entanglement does not go away if you think only about detection records of entangled particles as classical objects. Would you claim that detection records behave quantum mechanically (a la Schrodinger's cat)?
The detection records result from the ineraction of the detectors with quantum objects. Entangled particles just behave as they are supposed to do (because they are quantum objects) and therefore produce the observed detection records. If the detectors would interact with objects that behave sufficiently classically (like dice), the statistics of the detection records would of course be in agreement with classical statistics, but in the case of entangled particles, the detectors interact with quantum particles and therefore we observe the statistics that quantum objects are supposed to produce. Nothing is weird about the fact that (sufficiently) classical detectors interacting with quantum objects measure typtical quantum statistics. It would rather be weird if this weren't the case.
 
rubi said:
Nothing is weird about the fact that (sufficiently) classical detectors interacting with quantum objects measure typtical quantum statistics.
The weirdness is in the fact that statistics calculated from classical detection records are inconsistent with locality.
 
zonde said:
The weirdness is in the fact that statistics calculated from classical detection records are inconsistent with locality.
You are using a concept of locality that is only adequate for classical physics. It requires that all observables can be modeled on the same probability space, which is not true in quantum mechanics. Just like there is no probability distribution ##P(x,p)## for non-commuting ##\hat x## and ##\hat p##, there isn't ##P(A,\lambda)## either, because certainly at least one observable in ##\lambda## won't commute with ##A##. The fact that the world is quantum mechanical requires us to refine our classical concepts. When you say that the statistics is inconsistent with locality, you use a locality concept that is ill-defined for quantum systems. It only makes sense in a purely classical world, which we know isn't true as soon as we accept that quantum objects exist. Yes, it is true that if the world were classical, then quantum statistics were weird. But the world isn't classical.
 
  • Like
Likes Mentz114
rubi said:
You are using a concept of locality that is only adequate for classical physics. It requires that all observables can be modeled on the same probability space, which is not true in quantum mechanics. Just like there is no probability distribution ##P(x,p)## for non-commuting ##\hat x## and ##\hat p##, there isn't ##P(A,\lambda)## either, because certainly at least one observable in ##\lambda## won't commute with ##A##. The fact that the world is quantum mechanical requires us to refine our classical concepts. When you say that the statistics is inconsistent with locality, you use a locality concept that is ill-defined for quantum systems. It only makes sense in a purely classical world, which we know isn't true as soon as we accept that quantum objects exist. Yes, it is true that if the world were classical, then quantum statistics were weird. But the world isn't classical.
You assume I am referring to Bell theorem.
But I am not. Let me explain.

let me make a rather general conjecture that: For any QM prediction it is possible to have set of sequences of spacetime events (detection events) of any finite size that satisfy predicted relative frequencies exactly given we don't have to introduce rounding errors. And I will include in this conjecture assumptions of locality and no superdeterminism.

And by locality assumption here I mean that given string of factual detection events at one side it is possible to have string of detection events at other side that reproduce prediction of QM exactly (neglecting rounding errors). You see, no probabilities here. We just cover all possibilities.

And here is counterexample to that general conjecture https://www.physicsforums.com/threads/a-simple-proof-of-bells-theorem.417173/#post-2817138
 
Last edited:
zonde said:
You assume I am referring to Bell theorem.
But I am not. Let me explain.

let me make a rather general conjecture that: For any QM prediction it is possible to have set of sequences of spacetime events (detection events) of any finite size that satisfy predicted relative frequencies given we don't have to introduce rounding errors. And I will include in this conjecture assumptions of locality and no superdeterminism.

And by locality assumption here I mean that given string of factual detection events at one side it is possible to have string of detection events at other side that reproduce prediction of QM exactly (neglecting rounding errors). You see, no probabilities here. We just cover all possibilities.

And here is counterexample to that general conjecture https://www.physicsforums.com/threads/a-simple-proof-of-bells-theorem.417173/#post-2817138
Can you phrase your locality criterion in clear mathematical language and explain, why it follows from relativity? The fact that this "proof" comes from someone who writes about himself:
NICK HERBERT is the author of "Quantum Reality", "Faster Than Light", "Elemental Mind" and a chapbook "Physics on All Fours". He invented the shortest proof of Bell's Theorem, had a hand in the quantum no-cloning theorem, recently discovered the quantum no-wedding theorem and "Nick's Theorem" which uses physics to derive limits on local psychic powers. Nick is currently obsessed with quantum tantra which he envisions as a brand new way of doing science and maintains a blog on these and other interests here.
doesn't make me want to spend time on it. Maybe you can also refer me to a paper (not from Nick Herbert) that discusses this approach.
 
  • #10
rubi said:
doesn't make me want to spend time on it. Maybe you can also refer me to a paper (not from Nick Herbert) that discusses this approach.
Quite similar approach is used by Eberhard in his derivation of Bell type inequality [/PLAIN] http://dx.doi.org/10.1103/PhysRevA.47.R747[/URL]
 
Last edited by a moderator:
  • #11
rubi said:
You [zonde] are using a concept of locality that is only adequate for classical physics. It requires that all observables can be modeled on the same probability space, which is not true in quantum mechanics. Just like there is no probability distribution ##P(x,p)## for non-commuting ##\hat x## and ##\hat p##, there isn't ##P(A,\lambda)## either, because certainly at least one observable in ##\lambda## won't commute with ##A##. [...]
I'm missing something in this argument. My understanding of "locality" (in the context of EPR, Bell's thm, etc) is that observables which have support only on mutually spacelike-separated regions necessarily commute. This seems different from the "enhanced" concept of locality you seem to be advocating above for the quantum context. Please give a precise definition of your enhanced concept of locality.
 
  • #12
rubi said:
Can you phrase your locality criterion in clear mathematical language
You mean something like this?
1) given set A there exists set B' such that certain relationship between sets A and B' equals QM predicted value
2) given set B there exists set A' such that certain relationship between sets B and A' equals QM predicted value
Theory is local if within all sets B' that satisfy point 1) and all sets A' that satisfy point 2) we can find pair of sets A' and B' such that certain relationship between these sets equals QM predicted value.
rubi said:
explain, why it follows from relativity?
Hmm, I have to think about that.
Can you give as an example explanation how "no FTL" follows from relativity?
 
  • #13
strangerep said:
I'm missing something in this argument. My understanding of "locality" (in the context of Bell's thm, etc) is that observables which have support only on mutually spacelike-separated regions necessarily commute.
It's true that spacelike separated observables commute, but there are also observables that are not spacelike separated. For example the ##S_x##, ##S_y## and ##S_z## observables are not spacelike separated for Alice and Bobs individual particles. If you measure ##S_z## in a Bell test, the ##\lambda## observables would have to include ##S_x## and ##S_y## (and possibly many other observables) and there can't be a probability distribution ##P(S_x, S_y, S_z)## in quantum mechanics. Such combined probability distributions only exist for commuting observables. Whatever ##\lambda## is, in a quantum context, it certainly includes non-commuting observables that are localized in the same region as the one you are considering. That fact that Bobs variables are not among the ones that don't commute with Alices (and the other way around) doesn't help.

This seems different from the "enhanced" concept of locality you seem to be advocating above for the quantum context. Please give a precise definition of your enhanced concept of locality.
I don't have an enhanced concept of locality. I'm just saying that the classical one doesn't apply anymore. It might as well be that in a quantum world, statistics just can't be used anymore to make conclusions about locality.
 
  • #14
  • #15
rubi said:
It's true that spacelike separated observables commute, but there are also observables that are not spacelike separated. For example the ##S_x##, ##S_y## and ##S_z## observables are not spacelike separated for Alice and Bobs individual particles. If you measure ##S_z## in a Bell test, the ##\lambda## observables would have to include ##S_x## and ##S_y## (and possibly many other observables) and there can't be a probability distribution ##P(S_x, S_y, S_z)## in quantum mechanics. Such combined probability distributions only exist for commuting observables. Whatever ##\lambda## is, in a quantum context, it certainly includes non-commuting observables that are localized in the same region as the one you are considering. [...]
Imho, this sounds more like an argument against local realism (meaning the notion that all possible observables have a value before being measured). It's not really an argument against (the standard notion of) "locality" per se.
 
  • #16
rubi said:
but it still uses the same locality criterion as Bell.
So, do you need explanation why Bell's or Eberhard's locality criterion follows from relativity?
rubi said:
As far as I can tell, he only derives Bell's inequality in the presence of errors
You have misunderstood his derivation. He derives his inequality in presence of non-detections. But non-detections can be set to zero (there are no unpaired single detections) and of course derivation will remain valid. So his derivation is more general.
 
  • #17
strangerep said:
Imho, this sounds more like an argument against local realism (meaning the notion that all possible observables have a value before being measured). It's not really an argument against (the standard notion of) "locality" per se.
A realistic theory is non-local if Bell's inequality is violated. But QM is not a realistic theory, so the violation of Bell's inequality doesn't imply that QM is non-local. Thus, Bell's criterion doesn't capture locality adequately for theories that are not realistic. Bell's factorization criterion can't even be formulated in the context of QM, since QM doesn't have the combined probability distributions, which are needed to write it down.
 
  • #18
zonde said:
So, do you need explanation why Bell's or Eberhard's locality criterion follows from relativity?
I know it for Bell. I basically just want to know, why your definition of "locality" is appropriate, i.e. why it really captures the concept of locality appropriately.

You have misunderstood his derivation. He derives his inequality in presence of non-detections. But non-detections can be set to zero (there are no unpaired single detections) and of course derivation will remain valid. So his derivation is more general.
I'm aware of that. One can derive Bell type inequalities for more realistic situations, where detectors don't have 100% efficiency. Nevertheless, the derivations always assume Bell's factorization property somewhere and this is the one that supposedly encodes locality.
 
  • #19
rubi said:
I know it for Bell. I basically just want to know, why your definition of "locality" is appropriate, i.e. why it really captures the concept of locality appropriately.

I think that Bell explained his notion of locality in his essay about "Local Be-ables". Let me try to paraphrase, rather than repeat him.

Let's focus on a measurement event that takes place in a small region of spacetime. For example, we set up a Stern-Gerlach device for measuring the spin of an electron. Before the measurement takes place, we can figure out a set of possible outcomes for the measurement. Now, if we know more about the history of the universe prior to that measurement event, we may use that knowledge to narrow down the set of possibilities. For example, if we know that the electrons were produced in the spin-up state along some axis (and that there are no fields present between the source and the device), then we know that the device will definitely not measure spin-down along that axis. Bell's locality criterion is that the set of possibilities should be determined by local conditions. If information about conditions in distant regions of space allow you to narrow down the set of possibilities beyond what can be deduced from local conditions, then the theory is nonlocal in Bell's sense. The sense of "nonlocal" is pretty straight-forward: the best (most accurate) prediction about what happens in one region of space requires information about distant regions of spacetime.

And the EPR experiment is definitely nonlocal in this sense. A pair of anti-correlated spin-1/2 particles are produced. Alice measures the spin of one particle along axis \vec{A} and finds it is spin-up along that axis. Far, far, away, Bob measures the spin of the other particle along the same axis. Then it is definitely the case that Bob will measure spin-down, but there is no local information that would allow him to predict this. But there is nonlocal information: the fact that Alice already measured spin-up along that axis.

This notion of nonlocality is about nonlocality of inference, rather than causality. The mere fact that Alice can predict Bob's result doesn't say anything about whether there is a causal influence between the two measurements. But it does say that there is nonlocal information. Any correlation between distant events that doesn't factor into facts about local regions is a nonlocal correlation in Bell's sense. As to whether that's the "appropriate" notion of locality, it depends on what you mean: appropriate for what?
 
  • #20
rubi said:
A realistic theory is non-local if Bell's inequality is violated. But QM is not a realistic theory, so the violation of Bell's inequality doesn't imply that QM is non-local.

It seems clear to me that QM is nonlocal, in the sense that it makes nonlocal predictions. In a spin-1/2 EPR experiment, QM predicts that if Alice and Bob both measure spins of their particles along the same axis, they will get opposite results. That's a nonlocal fact about those results. The point about hidden variables is that such nonlocal facts can arise in classical probability through ignorance about local hidden (unknown) variables. So classically, nonlocal facts can be accounted for by local facts, and so the nonlocality is seen to be an artifact of our ignorance, rather than an objective fact about the world. But in contrast, QM appears to involve nonlocal facts that can't be accounted for by local facts. So it's nonlocal, in Bell's sense. I don't see how realistic versus nonrealistic is relevant to the conclusion.
 
  • #21
rubi said:
I know it for Bell. I basically just want to know, why your definition of "locality" is appropriate, i.e. why it really captures the concept of locality appropriately.
As I understand concept of locality, spacelike separated regions are independent as tested by "external" parameters ("external" parameters from one region can not influence what happens in the other region).
 
  • #22
stevendaryl said:
I think that Bell explained his notion of locality in his essay about "Local Be-ables". Let me try to paraphrase, rather than repeat him.

Let's focus on a measurement event that takes place in a small region of spacetime. For example, we set up a Stern-Gerlach device for measuring the spin of an electron. Before the measurement takes place, we can figure out a set of possible outcomes for the measurement. Now, if we know more about the history of the universe prior to that measurement event, we may use that knowledge to narrow down the set of possibilities. For example, if we know that the electrons were produced in the spin-up state along some axis (and that there are no fields present between the source and the device), then we know that the device will definitely not measure spin-down along that axis. Bell's locality criterion is that the set of possibilities should be determined by local conditions. If information about conditions in distant regions of space allow you to narrow down the set of possibilities beyond what can be deduced from local conditions, then the theory is nonlocal in Bell's sense. The sense of "nonlocal" is pretty straight-forward: the best (most accurate) prediction about what happens in one region of space requires information about distant regions of spacetime.
I understand this concept of locality, but zonde claims to be using a different one.

And the EPR experiment is definitely nonlocal in this sense. A pair of anti-correlated spin-1/2 particles are produced. Alice measures the spin of one particle along axis \vec{A} and finds it is spin-up along that axis. Far, far, away, Bob measures the spin of the other particle along the same axis. Then it is definitely the case that Bob will measure spin-down, but there is no local information that would allow him to predict this. But there is nonlocal information: the fact that Alice already measured spin-up along that axis.

This notion of nonlocality is about nonlocality of inference, rather than causality. The mere fact that Alice can predict Bob's result doesn't say anything about whether there is a causal influence between the two measurements. But it does say that there is nonlocal information. Any correlation between distant events that doesn't factor into facts about local regions is a nonlocal correlation in Bell's sense. As to whether that's the "appropriate" notion of locality, it depends on what you mean: appropriate for what?
Non-local correlations are not problematic though, as the example of Bertlmann's socks shows. People claim that Bell violations are a sign for non-local causation, which doesn't follow. It is true that non-local correlations between quantum objects can be more severe than non-local correlations between classical objects. But concluding that QM is non-local (i.e. it features non-local causation rather than just non-local correlations) is not possible, since Bell's argument for non-local causation in the case of inequality violation makes crucial use of the realism of the underlying theory and therefore doesn't apply to QM. In other words: If the world were classical, then a Bell violation excludes a common cause for the non-local correlations. Since, the world is quantum mechanical, a common cause cannot be excluded, so the non-local correlations needn't be problematic.

stevendaryl said:
It seems clear to me that QM is nonlocal, in the sense that it makes nonlocal predictions. In a spin-1/2 EPR experiment, QM predicts that if Alice and Bob both measure spins of their particles along the same axis, they will get opposite results. That's a nonlocal fact about those results. The point about hidden variables is that such nonlocal facts can arise in classical probability through ignorance about local hidden (unknown) variables. So classically, nonlocal facts can be accounted for by local facts, and so the nonlocality is seen to be an artifact of our ignorance, rather than an objective fact about the world. But in contrast, QM appears to involve nonlocal facts that can't be accounted for by local facts. So it's nonlocal, in Bell's sense. I don't see how realistic versus nonrealistic is relevant to the conclusion.
As I said, non-local correlations are not problematic even in a local theory. It would only be problematic if there were no common cause that could explain them, because that would hint at non-local causation. I'm only arguing that Bell violations can't be used to exclude a common cause in the past in the case of a non-realistic theory.

Edit: I'll explain it differently: Assume Alice has a red sock. Then she immediately knows that Bob has a Blue sock. Assume Alice has a spin-up partricle. Then she immediately knows that Bob has a spin-down particle. What is the difference? The difference is that the first case can be modeled by a local classical theory, in which there was a common cause of Alice and Bobs measurements. Someone just sent a red sock to Alice and a blue sock to Bob. The statistics of such experiments satisfy Bell's inequality. However, the statistics of the second case violates Bell's inequality. Does it mean that there is no common cause? No! What happened is the following: The world is quantum mechanical. Someone in the past generated a pair of entangled quantum objects and sent one to Alice and the other one to Bob. This is the common cause that explains the non-local correlations. This is only mysterious to someone who says: "I don't believe this mumbo-jumbo about superpositions. The spins clearly had definite values throughout the experiment. How can it be different? Therefore the world must be non-local." However, if you are comfortable with the fact that the world is quantum mechanical, the idea that there was a common cause should not trouble you.

zonde said:
As I understand concept of locality, spacelike separated regions are independent as tested by "external" parameters ("external" parameters from one region can not influence what happens in the other region).
Right, but how does this imply the locality criterion of Nick Herbert (for instance), which says something about errors rather than spacelike separated regions? Why is the statement about errors the same as a statement about spacelike separated regions?
 
Last edited:
  • #23
rubi said:
I understand this concept of locality, but zonde claims to be using a different one.
I reread your post #123 and I think it's worth returning to it.
rubi said:
It requires that all observables can be modeled on the same probability space, which is not true in quantum mechanics.
Let's say we have polarization entangled photons and two non-commuting probability spaces for H/V detections and +45/-45 detections. Let's say Alice and Bob both measure photons in H/V basis so they use H/V probability space and observe perfect correlations. If they would measure photons in +45/-45 basis they would use +45/-45 probability space and would observe perfect correlations. Is this approximately your idea of non-commuting probability spaces?
 
  • #24
zonde said:
Let's say we have polarization entangled photons and two non-commuting probability spaces for H/V detections and +45/-45 detections. Let's say Alice and Bob both measure photons in H/V basis so they use H/V probability space and observe perfect correlations. If they would measure photons in +45/-45 basis they would use +45/-45 probability space and would observe perfect correlations. Is this approximately your idea of non-commuting probability spaces?
It's not my idea, it's Andrei Khrennikov's or Fine's I think. You have the following spaces: ##\Omega_1 = \{\uparrow,\downarrow\}## and ##\Omega_2 = \{\leftarrow,\rightarrow\}##, and probabilities on them, but you don't have ##\Omega_1\times\Omega_2##, since the events in that space cannot occur due to the non-commutativity of observables. In a quantum system, it is just impossible in principle to measure the system in the state ##(\uparrow,\leftarrow)## for example, because an eigenstate of ##S_z## is never an eigenstate of ##S_x## at the same time. There is a probability ##P_1(\uparrow)## and a probability ##P_2(\leftarrow)##, but no combined probability ##P_{12}(\uparrow,\leftarrow)##.
 
  • #25
rubi said:
It's not my idea, it's Andrei Khrennikov's or Fine's I think. You have the following spaces: ##\Omega_1 = \{\uparrow,\downarrow\}## and ##\Omega_2 = \{\leftarrow,\rightarrow\}##, and probabilities on them, but you don't have ##\Omega_1\times\Omega_2##, since the events in that space cannot occur due to the non-commutativity of observables. In a quantum system, it is just impossible in principle to measure the system in the state ##(\uparrow,\leftarrow)## for example, because an eigenstate of ##S_z## is never an eigenstate of ##S_x## at the same time. There is a probability ##P_1(\uparrow)## and a probability ##P_2(\leftarrow)##, but no combined probability ##P_{12}(\uparrow,\leftarrow)##.
Are you trying to guess my next question?
Because I was asking about both parties measuring their entangled photons in the same commuting basis: H/V or +45/-45 that re analog to your ##\Omega_1 = \{\uparrow,\downarrow\}## and ##\Omega_2 = \{\leftarrow,\rightarrow\}##
 
  • #26
zonde said:
Are you trying to guess my next question?
Because I was asking about both parties measuring their entangled photons in the same commuting basis: H/V or +45/-45 that re analog to your ##\Omega_1 = \{\uparrow,\downarrow\}## and ##\Omega_2 = \{\leftarrow,\rightarrow\}##
Alice and Bobs observables commute, so if they make a choice of basis, then the occurring events can be modeled on a combined probability space. But that is not my point. The point is that Bell's factorization criterion must hold for local observables and it can only sensibly be written down if all observables commute. Bell requires you to be able to specify a set of local observables ("beables"), modeled on a combined probability space, that determines the local physics completely. Such a set cannot exist in quantum mechanics.

Edit: Or in other words: Bell's factorization criterion requires that all local observables that are needed to predict the local future can be modeled on a combined probability space.
 
  • #27
rubi said:
Alice and Bobs observables commute, so if they make a choice of basis, then the occurring events can be modeled on a combined probability space. But that is not my point. The point is that Bell's factorization criterion must hold for local observables and it can only sensibly be written down if all observables commute. Bell requires you to be able to specify a set of local observables ("beables"), modeled on a combined probability space, that determines the local physics completely. Such a set cannot exist in quantum mechanics.
Well, you see the problem is that if Alice measures her photons in H/V basis and Bob measures his in +45/-45 basis (yes you guessed my next question right) their detection records commute. If we use two channel detection scheme under ideal conditions all detection events are still perfectly correlated between Alice and Bob in time domain.
So what non-commuting spaces you can propose for factual physical detection records? And this question is important because my counterexample (and Eberhards derivation) is based on assumption that we can analyze detection records within the same domain and that QM predictions are applicable to statistics of these detection records (as experiments confirm).
 
  • #28
zonde said:
So what non-commuting spaces you can propose for factual physical detection records?
You can of course model the statistics of the detection records on a combined probability space. I never claimed something different. This is not relevant though. In order to conclude something about locality from the measured statistics, you need to derive an inequality and this derivation makes use of local hidden variables that can be modeled on a combined probability space. As you saw in the example of ##S_x## and ##S_y##, this requirement isn't satisfied. In a quantum theory, not all local observables can be modeled on the same probability space and therefore a derivation of Bell's inequality is not possible. If the world is quantum mechanical, the statistics therefore cannot be used to make conclusions about non-locality.

And this question is important because my counterexample (and Eberhards derivation) is based on assumption that we can analyze detection records within the same domain and that QM predictions are applicable to statistics of these detection records (as experiments confirm).
I still don't see how your criterion relates to locality. You have just defined a criterion and named it locality, but does it really deserve that name? I can't make this connection and I'm asking for clarification.
 
  • #29
rubi said:
The world is quantum mechanical. Someone in the past generated a pair of entangled quantum objects and sent one to Alice and the other one to Bob. This is the common cause that explains the non-local correlations.
I don't think anyone has a problem with that, even people who say QM is non-local. What makes them to say QM is non-local is something you actually didn't consider at all in your post. Its about collapse!

In a Bell-type experiment, at first we have one two-spin system in the state ## \frac{1}{\sqrt{2}} ( |\uparrow \downarrow \rangle-|\downarrow\uparrow \rangle) ## and this system can be as extended(in space) as you want. But suddenly, after A measures her spin, the one two-spin system collapses to two one-spin systems. This collapse is a consequence of A's measurement and the fact that A's measurement(which is a local event) is causing a non-local event (the collapse of a state which is describing a system not not wholly confined in a region of space), is what makes people say that QM is non-local.
Actually I should say the mere presence of a state like ## \frac{1}{\sqrt{2}} ( |\uparrow \downarrow \rangle-|\downarrow\uparrow \rangle) ## that couldn't care less about the spatial-extension of the system its describing means that QM is non-local.
 
  • #30
Shyan said:
I don't think anyone has a problem with that, even people who say QM is non-local. What makes them to say QM is non-local is something you actually didn't consider at all in your post. Its about collapse!

In a Bell-type experiment, at first we have one two-spin system in the state ## \frac{1}{\sqrt{2}} ( |\uparrow \downarrow \rangle-|\downarrow\uparrow \rangle) ## and this system can be as extended(in space) as you want. But suddenly, after A measures her spin, the one two-spin system collapses to two one-spin systems. This collapse is a consequence of A's measurement and the fact that A's measurement(which is a local event) is causing a non-local event (the collapse of a state which is describing a system not not wholly confined in a region of space), is what makes people say that QM is non-local.
Actually I should say the mere presence of a state like ## \frac{1}{\sqrt{2}} ( |\uparrow \downarrow \rangle-|\downarrow\uparrow \rangle) ## that couldn't care less about the spatial-extension of the system its describing means that QM is non-local.
No, the collapse is not a problem here, since it is only ever important if you make sequantial measurements. The statistics of a Bell-test experiment, however, are the same, whether there is a collapse or not. All statistics of Bell-test experiments can be computed from the uncollapsed state.

The collapse is certainly another peculiar feature of quantum mechanics and I'm not convinved that it is necessary, but that's another topic. I've had many discussions in this forum about this issue and they always ended up with people advocating their favourite interpretations of QM, so I don't really want to warm up this discussion.
 
  • #31
rubi said:
In order to conclude something about locality from the measured statistics, you need to derive an inequality and this derivation makes use of local hidden variables that can be modeled on a combined probability space.
My counterexample and Eberhard's derivation don't use local hidden variables. Only factual detections (Eberhard) and plus all possible counterfactual detections allowed by predictions of QM and locality criterion(my counterexample).
rubi said:
I still don't see how your criterion relates to locality. You have just defined a criterion and named it locality, but does it really deserve that name? I can't make this connection and I'm asking for clarification.
Let's start with this definition.
zonde said:
As I understand concept of locality, spacelike separated regions are independent as tested by "external" parameters ("external" parameters from one region can not influence what happens in the other region).
Is it OK. Probably I have to add that results of tests are represented by records of some spacetime events.
 
  • #32
zonde said:
My counterexample and Eberhard's derivation don't use local hidden variables. Only factual detections (Eberhard) and plus all possible counterfactual detections allowed by predictions of QM and locality criterion(my counterexample).
If that derivation doesn't ever make use of hidden variables, how can you exclude the possibility that the correlations can be explained by hidden variables?

Let's start with this definition.

Is it OK. Probably I have to add that results of tests are represented by records of some spacetime events.
What is an external parameter? I would just put it like this: Events in one region of spacetime can only influence events in the forward lightcone of that region.
 
  • #33
rubi said:
If that derivation doesn't ever make use of hidden variables, how can you exclude the possibility that the correlations can be explained by hidden variables?
If hidden variables are local then they are still subject to locality condition.

rubi said:
What is an external parameter? I would just put it like this: Events in one region of spacetime can only influence events in the forward lightcone of that region.
"External" parameter is for example analyzer angle. I am putting "external" in quotes because we need no-superdeterminism assumption and satisfactory source (preferably several sources) of randomness.
And definition have to be such that we can relate it to possible experimental tests. So in your definition you would have to be more specific what can be considered "influence" in experimental terms.
 
  • #34
rubi said:
Non-local correlations are not problematic though, as the example of Bertlmann's socks shows.

I consider Bertlmann's socks to be an illustration of exactly the opposite conclusion. Bertlmann's socks is an example of an apparent nonlocality that disappears when you are given more information about local conditions. That's the whole point of the search for hidden variables: You have a correlation that is apparently nonlocal, but you can eliminate the nonlocality if you can find local information that make the same predictions as the nonlocal information. If you can't find such variables, then you're stuck with a nonlocal theory.

People claim that Bell violations are a sign for non-local causation, which doesn't follow.

That's only because nobody really knows what "causation" means.

Edit: I'll explain it differently: Assume Alice has a red sock. Then she immediately knows that Bob has a Blue sock. Assume Alice has a spin-up partricle. Then she immediately knows that Bob has a spin-down particle. What is the difference? The difference is that the first case can be modeled by a local classical theory, in which there was a common cause of Alice and Bobs measurements.

That's a huge difference. In the socks case, we know that our nonlocal description is incomplete, that a complete description of Alice's and Bob's situation is local. So the apparent nonlocality is due to our ignorance about the state of the system. The nonlocality is in principle eliminable. That's not the case with QM.

In the one case, the most complete description of reality is local. In the other case, it's not.
 
  • #35
rubi said:
Edit: Or in other words: Bell's factorization criterion requires that all local observables that are needed to predict the local future can be modeled on a combined probability space.

Hmm. The facts remain that, right before Bob makes his measurement:
  • If you know everything there is to know about the local region near Bob, you can never do better than 50% probability of spin-up, 50% probability of spin-down.
  • If, in addition, you know that Alice measured spin-up at angle \vec{A}, then you can predict with certainty that Bob will measure spin-down along that axis.
So the quantum facts are nonlocal; the best prediction for what Bob will measure may involve facts about the situation far away from Bob.

Are you suggesting that it is possible to predict Bob's results using some kind of quantum local variables that fail to belong to a combined probability space?
 
  • Like
Likes zonde
  • #36
stevendaryl said:
I consider Bertlmann's socks to be an illustration of exactly the opposite conclusion. Bertlmann's socks is an example of an apparent nonlocality that disappears when you are given more information about local conditions. That's the whole point of the search for hidden variables: You have a correlation that is apparently nonlocal, but you can eliminate the nonlocality if you can find local information that make the same predictions as the nonlocal information.
The correlation doesn't suddenly become local once you found a hidden variable that explains it. It is still a non-local correlation, the numbers haven't changed. Non-locality of correlations is a relation between numbers. The point is that the correlation can be explained by a common cause in the past. The socks were separated in a local region and then sent to Alice and Bob at a slower speed than the speed of light. Thus neither the discovery of the red sock causes the blue sock to be blue nor does the discovery of the blue sock cause the red sock to be red. Instead, there is a common cause in the past.

If you can't find such variables, then you're stuck with a nonlocal theory.
Only under the assumption that the world is classical (i.e. realistic). If the world is classical, the common cause explanation is not possible and thus the discovery of the spin-up particle would have caused the other particle to have spin-down and the other way around: The proof of Bell's inequality assumes realism (modeling on a combined probability space) and locality. Thus a violation of Bell's inequality implies that not both realism and locality are true (by the logical principle of contraposition), which means that realism or locality or both are false. If we know that the world is realistic, must conclude that the locality assumption in the proof must have been false. However, if we don't assume a realistic world (for example a quantum mechanical world), then we can't infer that the locality assumption is false. Neither can we infer that it is true. We just don't know it.

That's only because nobody really knows what "causation" means.
Well, in the case of a Bell-test experiment, we can explain the non-local correlations if we accept that the world is quantum mechanical: The entangled quantum particles had been created locally in the past and then sent to Alice and Bob respectively at a speed lower than the speed of light. This is a perfectly causal explanation as soon as we accept that the world is quantum mechanical and quantum objects just happen to exist. If we hadn't entangled the particles in the past, before we sent them to Alice and Bob respectively, we wouldn't have seen the perfect correlations in the Bell-test experiment. A classical physicist couldn't accept such an explanation. But for a quantum physicist, who accepts that the world behaves quantum mechanically, it is not problematic. It's only the classical thinking that makes it seem weird.

That's a huge difference. In the socks case, we know that our nonlocal description is incomplete, that a complete description of Alice's and Bob's situation is local. So the apparent nonlocality is due to our ignorance about the state of the system. The nonlocality is in principle eliminable. That's not the case with QM.
I agree that it is a huge difference and the non-local correlation of quantum objects are very different from the non-local correlations of classical objects. But I don't agree that this implies that quantum mechanics is non-local, because for non-locality, it's the cause that matters, not the correlation. Quantum mechanics is not complete, but that doesn't imply that non-local correlations can't be explained causally.

In the one case, the most complete description of reality is local. In the other case, it's not.
In the other case, it's also local, because I can also give a common cause explanation for the non-local correlations. It just involves quantum objects rather than classical objects. The only thing you need to accept is that using quantum objects as if they did really happen to exist in the universe is a valid way of reasoning. And given the success of quantum mechanics, I don't find this assumption unreasonable.

stevendaryl said:
If you know everything there is to know about the local region near Bob, you can never do better than 50% probability of spin-up, 50% probability of spin-down.
That's right. Quantum mechanics is not complete. But completeness isn't required for locality. It's an entirely different concept.

If, in addition, you know that Alice measured spin-up at angle \vec{A}, then you can predict with certainty that Bob will measure spin-down along that axis.
That's also right. Non-local correlations exist, just as they do in classical theories (see Bertlmann's socks). In both cases, they can be explained by common cause explanations in the past, although in the quantum case, you must resort to quantum reasoning.

So the quantum facts are nonlocal; the best prediction for what Bob will measure may involve facts about the situation far away from Bob.
The facts are non-local, just as in the classical case. The explanation is local (i.e. causal) in both cases.

Are you suggesting that it is possible to predict Bob's results using some kind of quantum local variables that fail to belong to a combined probability space?
No, we can neither predict Alice's nor Bob's results. We can however predict the non-local correlations and we can explain them causally. No FTL is involved. The reason for the correlation lies in the past light cone of both Alice and Bob.
 
  • #37
rubi said:
The correlation doesn't suddenly become local once you found a hidden variable that explains it.

[edit] It's not about whether it's "explainable". It's about whether the result is predictable, given local information. It is, in the Bertlemann's socks case, and it is not in the EPR case.

The point of Bertlemann's socks is that the nonlocality is due to our ignorance of the complete state of affairs. So it's a subjective kind of nonlocality.

Well, in the case of a Bell-test experiment, we can explain the non-local correlations if we accept that the world is quantum mechanical:

My issue is not explaining correlations, it's about whether the information needed to predict Bob's future results is nonlocal, or not. Does there exist local information that allows you to predict that Bob will definitely measure spin-down along axis \vec{A}? No, that information does not exist. Does there exist nonlocal information that allows you to predict it? Yes, knowing that Alice obtained along that axis allows you to predict that Bob will measure spin-down.

In the Bertlemann's socks case, the information needed to predict the color of the sock exists locally. You just don't happen to know it. In the quantum case, the information doesn't exist locally.
 
  • #38
rubi said:
No, we can neither predict Alice's nor Bob's results.

That's not true. After Alice measures spin-up along axis \vec{A}, she can predict that Bob will measure spin-down along axis \vec{A}. So we certainly can predict Bob's results, in certain cases.
 
  • #39
rubi said:
In the other case, it's also local, because I can also give a common cause explanation for the non-local correlations.

I think you keep getting off onto "explanation", when I'm trying to talk about predictions. There is no local information that will allow you to predict Bob's result. But there is nonlocal information that allows you to predict Bob's result. That's the sense in which quantum predictions are nonlocal.
 
  • #40
rubi said:
Well, in the case of a Bell-test experiment, we can explain the non-local correlations if we accept that the world is quantum mechanical: The entangled quantum particles had been created locally in the past and then sent to Alice and Bob respectively at a speed lower than the speed of light. This is a perfectly causal explanation as soon as we accept that the world is quantum mechanical and quantum objects just happen to exist. If we hadn't entangled the particles in the past, before we sent them to Alice and Bob respectively, we wouldn't have seen the perfect correlations in the Bell-test experiment. ... We can however predict the non-local correlations and we can explain them causally. No FTL is involved. The reason for the correlation lies in the past light cone of both Alice and Bob.

Ah, sorry, this is not factually correct. I say this not even considering the general Bell Theorem issues that others have pointed out.

You can entangle, and get perfect correlations, from particles that have never existed in any common light cone. There is no common cause.

http://arxiv.org/abs/1209.4191

"The role of the timing and order of quantum measurements is not just a fundamental question of quantum mechanics, but also a puzzling one. Any part of a quantum system that has finished evolving, can be measured immediately or saved for later, without affecting the final results, regardless of the continued evolution of the rest of the system. In addition, the non-locality of quantum mechanics, as manifested by entanglement, does not apply only to particles with spatial separation, but also with temporal separation. Here we demonstrate these principles by generating and fully characterizing an entangled pair of photons that never coexisted. Using entanglement swapping between two temporally separated photon pairs we entangle one photon from the first pair with another photon from the second pair. The first photon was detected even before the other was created. The observed quantum correlations manifest the non-locality of quantum mechanics in spacetime."

And

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.3891

We experimentally entangle freely propagating particles that never physically interacted with one another or which have never been dynamically coupled by any other means. This demonstrates that quantum entanglement requires the entangled particles neither to come from a common source nor to have interacted in the past. In our experiment we take two pairs of polarization entangled photons and subject one photon from each pair to a Bell-state measurement. This results in projecting the other two outgoing photons into an entangled state.
 
  • Like
Likes rubi, vanhees71, strangerep and 1 other person
  • #41
stevendaryl said:
[edit] It's not about whether it's "explainable". It's about whether the result is predictable, given local information. It is, in the Bertlemann's socks case, and it is not in the EPR case.
No, it's not about predictability. It's only about causation. A theory is local if the cause for each event lies in the past lightcone of that event, rather than a spacelike separated region. That's the definition from relativity. The question is: Did Alice cause Bob's particle to be spin-down, when she measured hers to be spin-up, or would Bob have measured spin-down anyway, even if Alice hadn't measured first? This possibility is certainly consistent with QM. In the first case, Alice would influence Bob's particle non-locally. In the other case, there is no causal relation between the events. QM is silent on this issue. And we can't go back in time and try it.

The point of Bertlemann's socks is that the nonlocality is due to our ignorance of the complete state of affairs. So it's a subjective kind of nonlocality.
Yes, that is correct. But that doesn't imply that all other kinds of non-locality require non-local causal relationships.

My issue is not explaining correlations, it's about whether the information needed to predict Bob's future results is nonlocal, or not. Does there exist local information that allows you to predict that Bob will definitely measure spin-down along axis \vec{A}? No, that information does not exist. Does there exist nonlocal information that allows you to predict it? Yes, knowing that Alice obtained along that axis allows you to predict that Bob will measure spin-down.
As I said, predictability is not important. You only require that all events in spacetime that are in a cause-and-effect relationships can be connected by causal curves (i.e. timelike or lightlike curves).

stevendaryl said:
That's not true. After Alice measures spin-up along axis \vec{A}, she can predict that Bob will measure spin-down along axis \vec{A}. So we certainly can predict Bob's results, in certain cases.
Once we know the result of one measurement, we can predict the other one, just as in Bertlmann's socks. The question is, whether us measuring the first particle/sock caused the second particle/sock to have the value that we can measure.

stevendaryl said:
I think you keep getting off onto "explanation", when I'm trying to talk about predictions. There is no local information that will allow you to predict Bob's result. But there is nonlocal information that allows you to predict Bob's result. That's the sense in which quantum predictions are nonlocal.
As I said, the only relevant question is whether there are spacelike cause-and-effect relationships or not.
 
  • #42
DrChinese said:
Ah, sorry, this is not factually correct. I say this not even considering the general Bell Theorem issues that others have pointed out.

You can entangle, and get perfect correlations, from particles that have never existed in any common light cone. There is no common cause.

http://arxiv.org/abs/1209.4191

"The role of the timing and order of quantum measurements is not just a fundamental question of quantum mechanics, but also a puzzling one. Any part of a quantum system that has finished evolving, can be measured immediately or saved for later, without affecting the final results, regardless of the continued evolution of the rest of the system. In addition, the non-locality of quantum mechanics, as manifested by entanglement, does not apply only to particles with spatial separation, but also with temporal separation. Here we demonstrate these principles by generating and fully characterizing an entangled pair of photons that never coexisted. Using entanglement swapping between two temporally separated photon pairs we entangle one photon from the first pair with another photon from the second pair. The first photon was detected even before the other was created. The observed quantum correlations manifest the non-locality of quantum mechanics in spacetime."

And

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.3891

We experimentally entangle freely propagating particles that never physically interacted with one another or which have never been dynamically coupled by any other means. This demonstrates that quantum entanglement requires the entangled particles neither to come from a common source nor to have interacted in the past. In our experiment we take two pairs of polarization entangled photons and subject one photon from each pair to a Bell-state measurement. This results in projecting the other two outgoing photons into an entangled state.
Interesting. I'll read the articles, but I won't have time to reply before sunday evening. Maybe there is another causal explanation for these experiments that just isn't as simple as the one I proposed earlier. If not, I'll admit that I am wrong!
 
  • #43
rubi said:
No, it's not about predictability. It's only about causation

Maybe that's what you're talking about, but it isn't what I was talking about. I'm talking about predictability. That's exactly the issue, ever since E, P and R wrote their original paper:

If, without in any way disturbing a system, we can predict with certainty...the value of a physical quantity, then there exists an element of reality corresponding to this physical quantity.

In QM, such "elements of reality" are nonlocal.
 
  • #44
rubi said:
As I said, the only relevant question is whether there are spacelike cause-and-effect relationships or not.

It is not the only relevant question. It might be the only question you care about, but it is not what I'm talking about when I describe QM as nonlocal.

There are two different concepts: signal locality and "Bell" locality (or whatever you it should be called). Everyone agrees that QM satisfies signal locality. But it's not local, in the Bell sense.
 
  • #45
rubi said:
Or in other words: Bell's factorization criterion requires that all local observables that are needed to predict the local future can be modeled on a combined probability space.
All predictions of QM are made on the same probability space. And it does not matter that in order to arrive at these predictions you have to use different probability spaces.
 
  • #46
stevendaryl said:
It is not the only relevant question. It might be the only question you care about, but it is not what I'm talking about when I describe QM as nonlocal.

There are two different concepts: signal locality and "Bell" locality (or whatever you it should be called). Everyone agrees that QM satisfies signal locality. But it's not local, in the Bell sense.
I'm arguing that Bell's criterion does not adequately capture the notion of locality in a quantum world. QM violates Bell's criterion, we agree here, but calling it "locality" criterion is a misnomer, because it only captures locality in realistic scenarios.

zonde said:
All predictions of QM are made on the same probability space. And it does not matter that in order to arrive at these predictions you have to use different probability spaces.
That's false. Quantum mechanics does not have a state, in which a particle has both a definite ##S_x## and a definite ##S_y## value. However, a product space has such an event in its ##\sigma##-algebra.

I'll answer the remaining posts on sunday.
 
  • #47
Let me introduce a hypothetical device to explore this concept of nonlocality.

Suppose you have a device with a button on it, and when you push the button, a light on the device glows some color: Red, green or yellow. The color is completely random, except that any two devices, anywhere in the universe always show the same sequence of colors.

I think that people would assume that either the sequence of colors is predetermined, or that the devices are somehow signalling each other. But obviously, if there is no way to use the devices to signal FTL.
 
  • #48
rubi said:
As I said, predictability is not important. You only require that all events in spacetime that are in a cause-and-effect relationships can be connected by causal curves (i.e. timelike or lightlike curves).
Cause is a fuzzy concept. You can't define experimental criteria based on it.
 
  • #49
rubi said:
I'm arguing that Bell's criterion does not adequately capture the notion of locality in a quantum world. QM violates Bell's criterion, we agree here, but calling it "locality" criterion is a misnomer, because it only captures locality in realistic scenarios.

Well, I disagree. QM provides a nonlocal description of the results of experiments, in the sense that knowledge about conditions in one region of the universe allows you to make predictions about results in a far-distant region of the universe. We don't have to say anything about "realism" in order to come to that conclusion.
 
  • #50
stevendaryl said:
Well, I disagree. QM provides a nonlocal description of the results of experiments, in the sense that knowledge about conditions in one region of the universe allows you to make predictions about results in a far-distant region of the universe. We don't have to say anything about "realism" in order to come to that conclusion.
I had already adressed this using nothing but pure logic:

rubi said:
Only under the assumption that the world is classical (i.e. realistic). If the world is classical, the common cause explanation is not possible and thus the discovery of the spin-up particle would have caused the other particle to have spin-down and the other way around: The proof of Bell's inequality assumes realism (modeling on a combined probability space) and locality. Thus a violation of Bell's inequality implies that not both realism and locality are true (by the logical principle of contraposition), which means that realism or locality or both are false. If we know that the world is realistic, must conclude that the locality assumption in the proof must have been false. However, if we don't assume a realistic world (for example a quantum mechanical world), then we can't infer that the locality assumption is false. Neither can we infer that it is true. We just don't know it.

Ok, now I'm really gone till sunday. Bye!
 
Back
Top