DevilsAvocado said:
Thank you very much for this Demystifier. In an earlier thread, I did find it necessary to defend Griffiths as not being a crackpot. After all, he is a Professor of Physics at Carnegie Mellon University.
But now, I'm not so sure about this...
If Griffiths has made a mistake, where could it be? On the one hand, CH is not a realistic theory, so it seems that it could escape the Bell theorem.
In
http://quantum.phys.cmu.edu/CQT/chaps/cqt24.pdf (p289) he writes that "Thus the point at which the derivation of (24.10) begins to deviate from quantum principles is in the assumption that a function ##\alpha(w_{a}, \lambda )## exists for different directions ##w_{a}##."
Well, so far I think what he says is ok, since Bell's point is indeed that these exist only if local realism holds, and quantum mechanics is not a local realistic theory.
Then he says "The claim is sometimes made that quantum theory must be nonlocal simply because its predictions violate (24.10). But this is not correct. First, what follows logically from the violation of this inequality is that hidden variable theories, if they are to agree with quantum theory, must be nonlocal or embody some other peculiarity. But hidden variable theories by definition employ a different mathematical structure from (or in addition to) the quantum Hilbert space, so this tells us nothing about standard quantum mechanics."
This seems fishy, because
http://arxiv.org/abs/0901.4255 argues that the Bell theorem is compatible with quantum mechanics, since the wave function itself can serve as the hidden variable. It is simply that if one accepts "realism", then the wave function is nonlocal. So I don't think the Bell inequality is incompatible with quantum mechanics. Perhaps it is here that Griffiths has made a mistake.
Nonetheless, in the broader sense, it seems that Griffiths could be right, and CH could be local since it does seem to reject realism (ie. Griffiths's definition of "realism" is not common sense realism). Hohenberg's introduction to CH
http://arxiv.org/abs/0909.2359, for example, says CH is not realistic theory - which given how some versions of Copenhagen don't favour realism - CH could I think be argued to be Copenhagen done right.
But exactly how is locality retained in CH? Hohenberg says it's because there is no single framework in CH in which Eq 11
http://arxiv.org/abs/0909.2359 is satisfied. Can that be the explanation? It seems it is not satisfied in the orthodox shut-up-and-calculate Copenhagenish view, but that doesn't make shut-up-and-calculate local. So is the explanation instead that P(A,B,a,b), where a and b range over non-commuting observables does not exist in any single framework?
What I'm asking is: in CH is the Bell inequality violated in any single framework?