Quantum particle in a rigid box with 2 given wavefunctions solving for energies

CNMD
Messages
2
Reaction score
0
I have a quantum problem that I can't seem to figure out:

There's an electron in a 1-D rigid box of length 2A but it is known to reside in a central segment of 1A with uniform probability of residing within this segment.
There are two possible wavefunctions:
one with constant phase: ψ(x)= 1/√a (a=1A)
and with varying phase: ψ(x)= e^(jxpi/4a)/√a
Both of those wave equations are for within the segment and outside the segment ψ(x)= 0.

Determine the 3 lowest energies expected for each case and the probability of each outcome.

Since the wave equation is 0 outside the segment, I thought I'd treat this as a regular particle in a box problem with the box of length 1A. Then I plugged the ψ(x) given into the Schrodinger's equation to find E for the 2 cases:

d^2/dx^2 ψ(x) = -(2m/h^2)*E*ψ(x)

However, for the first case of constant phase, this gives that E=0 and for the second case, E= (h*pi)^2/(32ma^2) which is really just a constant and I can't get the 3 lowest energies.

What am I doing wrong? Any help would be appreciated!
 
Physics news on Phys.org
You would only get E=0 if psi were constant everywhere, but at 0.5 A and 1.5 A, the second derivative of the wavefunction is certainly not 0.
 
My understanding was that from 0-0.5 and 1.5-2, ψ(x)=0 (for both cases), so the second derivative would be 0 as well, no? And within 0.5-1.5 it is just a constant 1/√a so that derivative is also 0.
 
Nevertheless at these very two points the derivatives are not well defined.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top