Quantum Tunneling VS Water (or any other) Waves

QuantumMan
Messages
2
Reaction score
0
Would a water wave leak just like an electron with a barrier?
 
Physics news on Phys.org
QuantumMan said:
Would a water wave leak just like an electron with a barrier?

Assuming a watertight barrier, no not at all.
 
Drakkith said:
Assuming a watertight barrier, no not at all.

I'm not saying water is leaking through.

Say a 'water tight' barrier is surrounded by water on both sides. With a wave hitting one side.

Would there be a wave on the other side like in quantum tunneling.
 
If the barrier is perfectly rigid, then no water (pressure) waves will pass through no matter the thickness. If the barrier is not rigid, say it's made out of a thin film of flexible plastic, then of course the water wave can pass through. But this has nothing to do with quantum mechanics.

A better analogy for quantum-mechanical tunneling comes from classical E+M. When an EM wave reflects off of the boundary between two media at an angle greater than the critical angle, an evanescent wave forms in the second medium, and if the second medium is thin enough, the evanescent wave can actually transmit some energy from the EM wave through the second medium. The phenomenon is called "evanescent wave coupling." See http://en.wikipedia.org/wiki/Total_internal_reflection and http://en.wikipedia.org/wiki/Evanescent_wave
 
Last edited:
FOr a large object like a water wave it would require an impossible coincidence of every single particle in it tunneling at eactly the right time and then the ones behind them doing the same ... and doing do with all the protons and electrons remaining together. So improbably that it is impossible. It is just as impossible for even one atom with an electron AND a proton to do the same even if possible for indepenedent electrons to do it.
 
Superfluids (like liquid helium) can leak through a barrier. Just put a wall in a vessel with a superfluid then push it onto it. Some fluid will "climb" on the wall and fall on the other side, no matter how high the wall is, however this effect will vanish exponentialy with the height of the wall. This is an interesting phenomenon when a quantum-mechanical effect displays directly in a macroscopic world.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top