Anthony Beckwith said:
If Quarks and Antiquarks are bound together and don't appear individually why does baryon have 3 quarks but no antiquarks?
Because a bound state of a quark and antiquark is called a "meson", not a "baryon". (Note that you can also have an antibaryon with 3 antiquarks.)
A better question would be why those particular bound states are the ones that exist. The reason for that is that individual quarks have what is called "color", which is something like an electric charge but with three possible values (and three corresponding "anticolors") instead of one, but any bound state we actually observe has to be colorless, i.e., the colors of the individual quarks have to cancel each other out in the bound state. There are two ways the colors in a bound state can cancel:
(1) Have a quark with a particular color (red, green, or blue--those are the names for the three possible colors), and an antiquark with its corresponding anticolor (antired, antigreen, or antiblue), so the color and anticolor cancel out. This is a meson.
(2) Have three quarks, each with one of the three colors (red, green, and blue), which then combine to make "white", which is the same as being colorless and the colors canceling out (the detailed reason for why this can happen would go well beyond the scope of a "B" level thread, but it's been well confirmed experimentally). This is a baryon. (And you can also have an antibaryon with three antiquarks, each with one of the anticolors, that combine to make antiwhite, which is the same as being colorless.)