Undergrad Question about a passage in Blundell's QFT

  • Thread starter Thread starter WWCY
  • Start date Start date
  • Tags Tags
    Qft
Click For Summary
In Blundell's QFT book, the transition from the interaction potential V(x, y) to V(x-y) is explained by the need to satisfy Newton's third law, ensuring that forces between particles are equal and opposite. The derivation involves using center-of-mass and relative coordinates, leading to the conclusion that the potential can be expressed as a function of the relative position, V(r), to avoid overcounting interactions in the Hamiltonian. The second part of the discussion focuses on deriving the expression for the quantized potential operator, which involves integrating over discrete momenta and applying periodic boundary conditions. The simplification of the matrix elements is achieved by recognizing that V depends solely on the relative coordinates. This approach clarifies the structure of the two-particle interaction in quantum field theory.
WWCY
Messages
476
Reaction score
15
TL;DR
On the second quantisation of potential term associated with inter-particle interactions
In Bundell's QFT book, the second-quantised, pairwise interaction potential was defined as:
Screenshot 2019-06-21 at 6.21.15 AM.png

in a later step, this was re-written in a momentum-space representation
Screenshot 2019-06-21 at 6.24.07 AM.png


1. I don't understand why it goes from ##V(x, y)## to ##V(x-y)##, why do we consider only this form of interaction potentials?

2. Also, could someone show how the expression for ##\hat{V}## derive from the general form of the second-quantised two particle operator below?
Screenshot 2019-06-21 at 6.32.39 AM.png
Thanks in advance!
 
Physics news on Phys.org
ad 1) The usual expression is ##V(\vec{x},\vec{y})=V(\vec{x}-\vec{y})##, because you want to fulfill Newton's 3rd Law, i.e., if there's an interaction and particle 2 excerts a force ##\vec{F}_{12}=-\vec{\nabla}_1 V(\vec{x}_1,\vec{x}_2)## then necessarily particle 1 excerts a force on particle 2, ##\vec{F}_{21}=-\vec{F}_{12}=-\vec{\nabla}_2 V(\vec{x}_1,\vec{x}_2).##
So you have
$$\vec{\nabla}_1 V(\vec{x}_1,\vec{x}_2)=-\vec{\nabla}_2 V(\vec{x}_1,\vec{x}_2).$$
Now introduce center-of-mass and relative coordinates for the particle pair,
$$\vec{R}=\frac{1}{2} (\vec{x}_1+\vec{x}_2), \quad \vec{r}=\vec{x}_1-\vec{x}_2.$$
and consider ##V## as a function of ##\vec{R}## and ##\vec{r}##. Then you have
$$\partial_{1j} V= \frac{\partial R_k}{\partial x_{1j}} \frac{\partial}{\partial R_k} V + \frac{\partial r_k}{\partial x_{1j}} \frac{\partial}{\partial r_k} V=\frac{1}{2} \frac{\partial}{\partial R_k} V +\frac{\partial}{\partial r_k} V$$
and in the same way
$$\partial_{2j} V=\frac{1}{2} \frac{\partial}{\partial R_j} V -\frac{\partial}{\partial r_j} V.$$
Now Newton's 3rd law tells us that
$$\partial_{1j} V + \partial_{2j} V=0 \; \Rightarrow \; \frac{\partial}{\partial R_j} V=0 \; \Rightarrow \; V=V(\vec{r})=V(\vec{x}_1-\vec{x}_2).$$
And that's what you plug into your Hamiltonian. Note that the factor 1/2 comes from overcounting the sum over all particles (in the field formalism that's the integration over ##\vec{x}## and ##\vec{y}##) since the total potential energy of one pair has to count only once and not twice. So summing over all particle indices gives a factor 2 too large contribution of the two-body contributions. And that's why you have to compensate by the factor ##1/2##.

ad 2) Just go on with the calculation as it stands! Obviously the author wisely uses first a quantization volume (with single-particle wave functions periodic, leading to discrete momenta ##\vec{p} \in \frac{2 \pi}{L} \mathbb{Z}^3##, where ##L## is the length of the cube making up the quantization volume). Then you get
$$\hat{V}=\frac{1}{2 \mathcal{V}} \sum_{\vec{p}_1,\ldots \vec{p}_4} \hat{a}_1^{\dagger} \hat{a}_2^{\dagger} \hat{a}_3 \hat{a}_4 \int_{\mathbb{R}^3} \mathrm{d}^3 x \int_{\mathbb{R}^3} \mathrm{d}^3 y \exp[\mathrm{i} \vec{x}\cdot (\vec{p}_4-\vec{p}_1) + \mathrm{i} \vec{y} \cdot (\vec{p}_3-\vec{p}_2)] V(\vec{x}-\vec{y}).$$
From this you get
$$V_{1234}=\int_{\mathbb{R}^3} \mathrm{d}^3 x \int_{\mathbb{R}^3} \mathrm{d}^3 y \exp[\mathrm{i} \vec{x}\cdot (\vec{p}_4-\vec{p}_1) + \mathrm{i} \vec{y} \cdot (\vec{p}_3-\vec{p}_2)] V(\vec{x}-\vec{y}).$$
Now you should go on and use that ##V## depends only on the relative coordinates ##\vec{r}=\vec{x}-\vec{y}## to simplify the matrix elements.

Hint: Introduce ##\vec{R}## and ##\vec{r}## as integration variables (note that you need the Jacobian of the corresponding coordinate transformation!).
 
  • Like
Likes WWCY
Cheers, I think i get it now. I'll try and work through the details!
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 87 ·
3
Replies
87
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
16K