Sagittarius A-Star
Science Advisor
- 1,399
- 1,058
You can i.e. derive the first equation also with the inverse Lorentz transformation. It is only a little bit more complicated.Chenkel said:##t' = \gamma{t}## and
##t = \gamma{t'}##
...
Notice the first equation is used in the Lorentz transformation and the 2nd equation is used in the inverse Lorentz transformation.
Inverse LT:
##x=\gamma(x'+vt') \ \ \ \ \ (1)##
##t=\gamma(t'+vx'/c^2) \ \ \ \ \ (2)##
The clock is at rest in the unprimed frame at ##x=0##.
With equation (1) follows:
##\require{color} 0=\gamma(x'+vt') \ \ \ \ \ (3)##
To eliminate ##x'## in equation (3), I solve equation (2) for ##x'##...
##t=\gamma(t'+vx'/c^2)##
##{t \over \gamma}-t' = vx'/c^2##
##x'=\color{blue}{c^2 \over v}({t\over \gamma}-t')\color{black} \ \ \ \ \ (4)##
... and put the right side of equation (4) for ##x'## into equation (3):
##0=\gamma(\color{blue}{c^2 \over v}({t\over \gamma}-t')\color{black}+vt')##
##0={c^2 \over v}({t\over \gamma}-t')+vt'##
##0={c^2t\over \gamma v}-t'{c^2 \over v}+vt'##
##t= {\gamma v\over c^2 }({c^2 \over v} -v)t'##
##t= \gamma(1-{v^2\over c^2})t'##
$$t' = \gamma{t} \ \ \ \ \ (\text{condition:}\ x=0)$$
Last edited: