flyingpig
- 2,574
- 1
Homework Statement
Prove that for all integers n \geq 1, one has1 + 2 + ... + n = \frac{n(n+1)}{2}
(1) S(1) = 1, true
(2) Let n = k + 1
1 + 2 + ... + k + (k + 1) = \frac{(k+`1)(k + 2)}{2}
The Attempt at a Solution
Why is the last series
1 + 2 + ... + k + (k +1) instead of 1 + 2 +...+ (k + 1)?