Question about Lagrangian in electromagnetic interaction

mings6
Messages
11
Reaction score
0
Sorry for a naive question.

In EM textbook and QM path integral textbook, the action and Lagrangian in electromagnetic interaction are

S = L dt = e(\phi – A v) dt ---equ.(1)

But in QFT textbook, the action and Lagrangian density are

S = L d^4x = A J d^4x ---equ.(2)

As I understand, in equ.(2), J = \rho U = \rho \gamma V
In which \rho is density, U is the 4-velocity=dx/d\tau, and V is the common velocity=dx/dt, \gamma is \sqrt (1-v^2/c^2).

So equ.(2) will have a factor of \gamma, but equ.(1) does not have.

So where is my mistake?
 
Physics news on Phys.org
mings6 said:
Sorry for a naive question.

In EM textbook and QM path integral textbook, the action and Lagrangian in electromagnetic interaction are

S = L dt = e(\phi – A v) dt ---equ.(1)

But in QFT textbook, the action and Lagrangian density are

S = L d^4x = A J d^4x ---equ.(2)

As I understand, in equ.(2), J = \rho U = \rho \gamma V
In which \rho is density, U is the 4-velocity=dx/d\tau, and V is the common velocity=dx/dt, \gamma is \sqrt (1-v^2/c^2).

So equ.(2) will have a factor of \gamma, but equ.(1) does not have.

So where is my mistake?
The 4-current is J^\alpha = \rho_0 u^\alpha, where \rho_0 is related to the charge density by \rho_0 = \rho/\gamma and u^\alpha is the 4-velocity, u^\alpha = \gamma(c,{\bf v}). You'll find that the \gamma's cancel.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top