(adsbygoogle = window.adsbygoogle || []).push({}); Question about Landau: Definition of "Number of states with energy" in an interval

Hey! I am currently reading Landau's Statistical Physics Part 1, and in Paragraph 7 ("Entropy") I am struggling with a definition.

Right before Equation (7.1) he gives the "required number of states with energy between [itex]E[/itex] and [itex]E+\mathrm{d}E[/itex]" as:

[tex]\frac{\mathrm{d}\Gamma(E)}{\mathrm{d}E} \mathrm{d}E[/tex]

I don't understand this equation. Am I supposed to understand [itex]\Gamma(E)[/itex] as a continuous function, and therefore [itex]\frac{\mathrm{d}\Gamma(E)}{\mathrm{d}E}[/itex] as a derivative?

Furthermore, how is the energy probability distribution

[tex]W(E) = \frac{\mathrm{d}\Gamma(E)}{\mathrm{d}E} w(E)[/tex]

different from [itex]w(E)[/itex]. Isn't [itex]w(E)[/itex] kind of a probability distribution by itself?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question about Landau: Definition of Number of states with energy in an interval

**Physics Forums | Science Articles, Homework Help, Discussion**