Originally posted by Ambitwistor
A static gravitational field (such as, more or less, the Earth's gravitational field) doesn't have any gravitational waves, but objects still fall. (Likewise, the electric field around a point charge doesn't have any electromagnetic waves, but charges are still attracted or repelled from it.) Gravitational waves are changes in the gravitational field, just like electromagnetic waves (light) are changes in the electromagnetic field.
I think you are confusing some issues.
Gravitational waves can emanate from a source as a wave, analogous to how light (electromagnetic waves) radiates from a source. But electromagnetic waves are not responsible for, say, the electrostatic attraction (or repulsion) between two charges, nor are gravitational waves intrinsically responsible for the attraction of two masses. Nothing has to "emanate" from a mass or charge, in the sense of some effect propagating at some speed through space, in order for one body to influence another. (But if you change the source, then the effects of that change will propagate out in terms of changes in the field at successively more distant points.)
I still don't know what you're talking about.