Question about Metric Tensor: Can g_{rr} be Functions of Coordinate Variables?

kkz23691
Messages
46
Reaction score
5
Hello

Say, the metric tensor is diagonal, ##g=\mbox{diag}(g_{11}, g_{22},...,g_{NN})##. The (null) geodesic equations are

##\frac{d}{ds}(2g_{ri} \frac{dx^{i}}{ds})-\frac{\partial g_{jk}}{\partial x^{r}}\frac{dx^{j}}{ds}\frac{dx^{k}}{ds} = 0##

These are ##N## equations containing ##N## partial derivatives ##\frac{\partial g_{rr}}{\partial x^{l}}##.

The question is - does this mean ##g_{rr}## (a total of ##N## of them) can be functions of up to one coordinate variable each?
Say, in cyl. coordinates ##ds^2=g_{11}(r)dr^2+g_{22}(\theta)d\theta^2+g_{33}(z)dz^2+g_{44}(t)dt^2##
What is your understanding - can say, ##g_{22}## be a function of ##t##? Or could ##g_{11}## be a function of ##z##?

It just seems that if in the most general case ##g_{rr}=g_{rr}(x^1,x^2,...,x^N)## the geodesic equations should be at least ##N^2##, to carry the information for all possible partial derivatives...

Any thoughts?
 
Physics news on Phys.org
I'm not sure if I understand the question. I think you've confused the coordinate r with the index r in the equation.

Here it is with m replacing r as the surviving index.

##
\frac{d}{ds}(2g_{mi} \frac{dx^{i}}{ds})-\frac{\partial g_{jk}}{\partial x^{m}}\frac{dx^{j}}{ds}\frac{dx^{k}}{ds} = 0
##

There is no reason why the metric coefficients should not be functions of all or any of the coordinates.
 
Last edited:
Then we would have ##N^2## nonzero partial derivatives ##\frac{\partial g_{rr}}{\partial x^l}##, while the geodesic equations are only ##N##.
 
kkz23691 said:
Then we would have ##N^2## nonzero partial derivatives ##\frac{\partial g_{rr}}{\partial x^l}##, while the geodesic equations are only ##N##.

The geodesic equation is for determining x^\mu(\tau) given g_{\mu \nu}. It's not for determining g_{\mu \nu}. There are 4 equations and four unknowns:

\frac{d^2 x^\mu}{d\tau^2} =...
 
  • Like
Likes kkz23691
Mentz114 said:
I think you've confused the coordinate r with the index r in the equation.
My bad, should have used something else instead of r.

stevendaryl said:
There are 4 equations and four unknowns
Ah, I see. There are ##N## coefficients of the metric tensor which, through the ##N## geodesic equations output ##N## parametric equations for the geodesic. This makes sense :smile: I shouldn't have looked at the number of derivatives.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top