Question about momentum (elastic collision)

AI Thread Summary
In an elastic collision involving a 4 kg block moving at 3 m/s and a 2 kg block at rest, the conservation of momentum and kinetic energy must be applied to find the final velocities. The initial momentum is calculated as 12 kg·m/s, leading to the equations that govern the final velocities of both blocks. After solving the equations, the final velocity of the 4 kg block is determined to be 1 m/s, while the 2 kg block moves at 4 m/s. It is emphasized that momentum is conserved in all types of collisions, but the reversal of relative velocities is specific to elastic collisions. The discussion concludes with a confirmation of the calculated velocities.
RuthlessTB
Messages
22
Reaction score
0

Homework Statement


A block with mass 4 kg and velocity of 3 m/s collides elastically with block B with mass 2 kg which is originally at rest. Find the velocities of the two blocks after the collision.

Homework Equations


P= m * v

The Attempt at a Solution


This is the first time I try to solve an elastic collision problem, not sure if its the right way or no.

(M1*V1) + (M2*V2)= (M1+M2) Vc
(4*3) + (2*0) = (6) Vc
Vc= 12/6 = 2 m/s
 
Physics news on Phys.org
RuthlessTB said:
(M1*V1) + (M2*V2)= (M1+M2) Vc
You cannot assume that both blocks end up with the same velocity. That would be true for an inelastic collision.

Hint: What two quantities are conserved in an elastic collision? (What does elastic collision mean?)
 
In elastic collision, momentum before equals to momentum after (Pi=Pf).

(M1*V1) + (M2*V2) = (M1 * V1') (M2*V2')
1) 12= (4 * V1') + (2 * V2')

V1 - V2 = -(V1' - V2')
2) 3-0 = -(V1' + V2')

3 + V1' = V2'

By substitution to get V1'
12 = (4*V1') + (2 * (3+V1'))
Therefore, V1'= 1 m/s

And for V2'
12= 4+ (2*V2')
V2'= 4 m/s
 
RuthlessTB said:
In elastic collision, momentum before equals to momentum after (Pi=Pf).

(M1*V1) + (M2*V2) = (M1 * V1') (M2*V2')
1) 12= (4 * V1') + (2 * V2')

V1 - V2 = -(V1' - V2')
2) 3-0 = -(V1' + V2')

3 + V1' = V2'

By substitution to get V1'
12 = (4*V1') + (2 * (3+V1'))
Therefore, V1'= 1 m/s

And for V2'
12= 4+ (2*V2')
V2'= 4 m/s
Excellent.

Two comments:
(1) Momentum is conserved in any collision, not just elastic ones.
(2) Your second equation, that the relative velocities are reversed, is only true in elastic collision.

Good job.
 
  • Like
Likes 1 person
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
16
Views
3K
Replies
6
Views
2K
Replies
5
Views
2K
Replies
4
Views
5K
Replies
8
Views
2K
Replies
4
Views
2K
Back
Top