Question about Riemann Zeta Function

AI Thread Summary
Calculating the Riemann Zeta Function ζ(s) for complex values like ζ(1/2 + i) involves summing the series 1/n^(1/2+i) for n from 1 to infinity. Euler's Identity is not relevant here; instead, Euler's Formula, which relates complex exponentials to trigonometric functions, is more applicable. The imaginary part can be handled by factoring it out, but it’s often left in its original form for analysis. To find a value, one can compute the first few terms of the series and observe convergence. Understanding the behavior of ζ(s) along the critical line where Re(s) = 1/2 is crucial for deeper insights.
willr12
Messages
17
Reaction score
2
I understand how to calculate values of positive values ζ(s), it's pretty straightforward convergence. But when you expand s into the complex plane, like ζ(δ+bi), how do you assign a value with i as an exponent? Take for example
ζ(1/2 + i)
This is the sequence
1/1^(1/2+i) + 1/2^(1/2+i) + 1/3^(1/2+i) ...
How do you assign a value to this? do you have to use euler's identity to calculate it? Or am I looking at it all wrong?
P. S. Try to dumb it down for me. I'm in algebra 2 right now...
 
Mathematics news on Phys.org
First, Euler's Identity has nothing to do with the Reimann-Zeta function. Euler's Identity is just
##e^{i \pi} + 1 = 0##
Euler's Formula is probably what you're thinking of (which is where the above identity comes from):
##e^{ix} = \cos x + i \sin x##
But there's no exponential function (it works that way because the exponential function is re-written with a power series to get the above formula), and ##i## would have to be factored out of the exponent entirely to rewrite it that way (it's only in one of the terms).
But, in the case you're talkng about where ##s## is defined as ##\sigma + bi## for ##0 < \sigma < 1##, then it can be left as is, but the imaginary zeroes are plotted along the "critical line", ##\Re(s) = \frac{1}{2}##

http://mathworld.wolfram.com/RiemannZetaFunction.html
 
Last edited:
I'd say, calculate the first m terms, and the first m+1, m+2... and see what it converges to.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top