MHB Question about roots/synthetic division

  • Thread starter Thread starter Madds
  • Start date Start date
  • Tags Tags
    Division
Madds
Messages
2
Reaction score
0
View attachment 7376
According to the synthetic division done below, what was the original polynomial and what number do we know is a root of that polynomial? Explain how you know to receive full points.

I know what the polynomial is, but I thought the root of this polynomial would be 1 but it's actually -1 could somebody explain why?
 

Attachments

  • 20171014_164749-min.jpg
    20171014_164749-min.jpg
    37.2 KB · Views: 98
Mathematics news on Phys.org
When doing synthetic division, the actual root $r$ or zero of the polynomial is put out to the left. Thus we know:

$$f(r)=0$$

And the polynomial function will contain the factor $(x-r)$. This might be why you felt the number needed to be negated?
 
Your question is puzzling. Are you clear on what "synthetic division" is? It is a quick way of dividing a polynomial by x- a for some value of a. Specifically, we write just the coefficients of the polynomial (here that is "5 6 7 6" which tells us that the original polynomial was [math]5x^3+ 6x^2+ 7x+ 6[/math]. The number we are "dividing" by is a= -1. In general, if we divide a polynomial, P(x), by x- a, the remainder is P(a).

The synthetic division here, shows that when x, in this polynomial, is set to -1, the value of the polynomial. is 0. That means that x= -1 is a root.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top