Question about source flow rate across line AB.

AI Thread Summary
The discussion revolves around determining the flow rate in Line AB, with two differing calculations leading to different results. One calculation yields a flow rate of 0.3012q, while the book provides a flow rate of 0.19878q, based on different values for θB. The discrepancy arises from the multi-valued nature of the arctan function, which can lead to selecting incorrect angles. Participants agree that the book's answer may be incorrect and suggest that the flow rate should be represented as Q_{AB}^{*} instead of Q_{AB}^{'} for accuracy. The conversation emphasizes the importance of selecting the correct angle when using arctan to avoid such discrepancies.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
Determine flow rate per unite width in the line
Relevant Equations
flow rate equation
Q:Please hlep me to understand which ans is correct.To determine the flow rate in Line AB.
$$\mathrm{Known}:V_A,q,r_A = constant.$$
1670661097057.png


so/
select:## A,{B}^{\text{'}},B,A,## is control volume
1670660970211.png


$${Q}_{AB}={Q}_{A{B}^{\text{'}}}=\iint _{A}^{}({V}_{A})dA={\int }_{{\theta }_{A}}^{{\theta }_{B}}({V}_{A}){r}_{A}d\theta $$$$\overset\rightharpoonup{V}=\triangledown \phi =<\frac{\partial \phi }{\partial r},\frac{1}{r}\frac{\partial \phi }{\partial \theta }>=<\frac{1}{r}\frac{\partial \psi }{\partial \theta },-\frac{\partial \psi }{\partial r}>=<{V}_{r},{V}_{\theta }> $$$$\therefore V_A=\frac1{r_A}\frac{\partial\psi}{\partial\theta}\;$$$$Q_{AB}=\int_{\theta_A}^{\theta_B}{(V_A)}r_Ad\theta\;=\;\int_{\theta_A}^{\theta_B}{(\frac1{r_A}\frac{\partial\psi}{\partial\theta})}r_Ad\theta=\int_{\theta_A}^{\theta_B}{(\frac{\partial\psi}{\partial\theta})}d\theta=\psi_B-\psi_A$$to find ##\psi##,
$$F(z)=\frac q{2\pi}\ln(z)=\frac q{2\pi}ln(re^{i\theta})=\frac q{2\pi}\ln r+i\frac q{2\pi}\theta=\phi+i\psi$$so $$\psi=\frac q{2\pi}\theta$$
$$Q_{AB}=\psi\left(\theta_B\right)\mathit-\psi\left(\theta_A\right)\mathit=\frac q{2\pi}(\theta_B-\theta_A)$$$$\theta_A=\tan^{-1}\left(\frac11\right)=0.7854\;rad,$$
$$\theta_B=\frac\pi2+\tan^{-1}\left(\frac1{0.5}\right)=2.6779\;rad$$
So ans by myself is
$$\therefore Q_{AB}=\frac q{2\pi}{(2.6779-0.7854)}=0.3012q............(Ans(1))$$$$////////////////////////$$
But book say:
$$\theta_A=\tan^{-1}\left(\frac yx\right)=\tan^{-1}\left(\frac{\mathit1}{\mathit1}\right)=0.7854\;rad$$$$\theta_B=\tan^{-1}\left(\frac yx\right)=\tan^{-1}\left(\frac{0.5}{-1}\right)\;=\;-0.4636\;rad$$$$Q_{AB}=\psi\left(\theta_A\right)-\psi\left(\theta_B\right)=\frac q{2\pi}{(0.7854+0.4636)}=0.19878q........(Ans(2))$$
 
Last edited:
Physics news on Phys.org
You may have noticed that the two values for θB differ by π.
The result of arctan is of course multi-valued, with the values at intervals of π. So it is always necessary to make sure that the right value is selected. Question is, which of you selected the right value? (I'm with you.)
 
haruspex said:
You may have noticed that the two values for θB differ by π.
The result of arctan is of course multi-valued, with the values at intervals of π. So it is always necessary to make sure that the right value is selected. Question is, which of you selected the right value? (I'm with you.)
I think the flow rate in book is ## {Q}_{A{B}^{*}} ## not ## {Q}_{A{B}^{\text{'}}}##.
So the book answer is not correct.
Am I right ?
1670664112315.png
 
Last edited:
tracker890 Source h said:
I think the flow rate in book is ## {Q}_{A{B}^{*}} ## not ## {Q}_{A{B}^{\text{'}}}##.
So the book answer is not correct.
Am I right ?
View attachment 318535
I think so.
 
  • Like
Likes tracker890 Source h
I agree with your result. The included angle is ##\tan^{-1}2+\frac{\pi}{4}##
 
  • Like
Likes tracker890 Source h
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top