Why must the second term on the right-hand side vanish in string theory?

StenEdeback
Messages
65
Reaction score
38
Homework Statement
There is one statement in the text of the attached picture that I do not understand
Relevant Equations
See text below
I am doing private studies in string theory and am reading "A first course in string theory" by Barton Zwiebach. Below equation 6.52 the author
says "Since the second term on the right-hand side must vanish...". I do not understand why this term must vanish, and I would be grateful for an explanation.

Sten Edebäck

IMG_0026.PNG
 
Physics news on Phys.org
The first term on the RHS should vanish because of the choice that boundary values of integration vanish, and the second term on the RHS is zero follows from this and ##\delta S=0##.
 
  • Like
Likes StenEdeback
Thank you! A good explanation! Physics Forums is indeed a valuable last resort for me doing private studies, when I cannot find the answers to my questions by googling. Physics Forums is the equivalent of a supporting professor to me. And I feel a true joy when I overcome a hurdle and can go on with my studies. Theoretical Physics is really fun!
 
  • Like
Likes Hamiltonian, Amrator, pinball1970 and 4 others
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top