- #1
thaiqi
- 160
- 8
- TL;DR Summary
- question on Galois correspondence
Question: Galois group of ##x^4 - 2 ## over Q.The correspondence is:
$$
\begin{aligned}
(N_1) \leftarrow \rightarrow Q(\sqrt{2})
\end{aligned}
$$
$$
\begin{aligned}
(N_2) \leftarrow \rightarrow Q(i)
\end{aligned}
$$
$$
\begin{aligned}
(N_3) \leftarrow \rightarrow Q(i\sqrt{2})
\end{aligned}
$$
$$
\begin{aligned}
(N_4) \leftarrow \rightarrow Q(\sqrt{2}, i)
\end{aligned}
$$
$$
\begin{aligned}
(H_3) \leftarrow \rightarrow Q(\sqrt[4]{2} (1+i))
\end{aligned}
$$
$$
\begin{aligned}
(H_4) \leftarrow \rightarrow Q(\sqrt[4]{2} (1-i))
\end{aligned}
$$My question is : How are these intermediate subfields (on the right side of the arrows) obtained?(The eight subgroups are:)
$$
\begin{aligned}
(N_1) & = \left\{ 1,\xi, \eta^2 , \xi\eta^2 \right\} \\
(N_2) & = \left\{ 1, \eta , \eta^2 , \eta^3 \right\} \\
(N_3) & = \left\{ 1, \eta^2 , \xi\eta, \xi\eta^3 \right\} \\
(N_4) & = \left\{ 1, \eta^2 \right\} \\
(H_1) & = \left\{ 1,\xi \right\} \\
(H_2) & = \left\{ 1,\xi\eta^2 \right\} \\
(H_3) & = \left\{ 1,\xi\eta \right\} \\
(H_4) & = \left\{ 1,\xi\eta^3 \right\}
\end{aligned}
$$
in which:
$$
\begin{aligned}
\xi : \sqrt[4]{2} \rightarrow -\sqrt[4]{2} \\
i\sqrt[4]{2} \rightarrow i\sqrt[4]{2} \\
-\sqrt[4]{2} \rightarrow \sqrt[4]{2} \\
-i\sqrt[4]{2} \rightarrow -i\sqrt[4]{2}
\end{aligned}
$$
$$
\begin{aligned}
\eta : \sqrt[4]{2} \rightarrow -i\sqrt[4]{2} \\
i\sqrt[4]{2} \rightarrow -\sqrt[4]{2} \\
-\sqrt[4]{2} \rightarrow -i\sqrt[4]{2} \\
-i\sqrt[4]{2} \rightarrow \sqrt[4]{2}
\end{aligned}
$$
$$
\begin{aligned}
(N_1) \leftarrow \rightarrow Q(\sqrt{2})
\end{aligned}
$$
$$
\begin{aligned}
(N_2) \leftarrow \rightarrow Q(i)
\end{aligned}
$$
$$
\begin{aligned}
(N_3) \leftarrow \rightarrow Q(i\sqrt{2})
\end{aligned}
$$
$$
\begin{aligned}
(N_4) \leftarrow \rightarrow Q(\sqrt{2}, i)
\end{aligned}
$$
$$
\begin{aligned}
(H_3) \leftarrow \rightarrow Q(\sqrt[4]{2} (1+i))
\end{aligned}
$$
$$
\begin{aligned}
(H_4) \leftarrow \rightarrow Q(\sqrt[4]{2} (1-i))
\end{aligned}
$$My question is : How are these intermediate subfields (on the right side of the arrows) obtained?(The eight subgroups are:)
$$
\begin{aligned}
(N_1) & = \left\{ 1,\xi, \eta^2 , \xi\eta^2 \right\} \\
(N_2) & = \left\{ 1, \eta , \eta^2 , \eta^3 \right\} \\
(N_3) & = \left\{ 1, \eta^2 , \xi\eta, \xi\eta^3 \right\} \\
(N_4) & = \left\{ 1, \eta^2 \right\} \\
(H_1) & = \left\{ 1,\xi \right\} \\
(H_2) & = \left\{ 1,\xi\eta^2 \right\} \\
(H_3) & = \left\{ 1,\xi\eta \right\} \\
(H_4) & = \left\{ 1,\xi\eta^3 \right\}
\end{aligned}
$$
in which:
$$
\begin{aligned}
\xi : \sqrt[4]{2} \rightarrow -\sqrt[4]{2} \\
i\sqrt[4]{2} \rightarrow i\sqrt[4]{2} \\
-\sqrt[4]{2} \rightarrow \sqrt[4]{2} \\
-i\sqrt[4]{2} \rightarrow -i\sqrt[4]{2}
\end{aligned}
$$
$$
\begin{aligned}
\eta : \sqrt[4]{2} \rightarrow -i\sqrt[4]{2} \\
i\sqrt[4]{2} \rightarrow -\sqrt[4]{2} \\
-\sqrt[4]{2} \rightarrow -i\sqrt[4]{2} \\
-i\sqrt[4]{2} \rightarrow \sqrt[4]{2}
\end{aligned}
$$
Last edited: