zeromodz
- 244
- 0
My first question is the following. Does the radial component of the schwarzchild metric account for just the radius of the body in study or is it the distance between the body and the observer, where the body is treated as a singularity (Point mass particle)?
My second question is about how the metric expresses time dilation and length contraction.
c^2dτ^2 = -(1 - Rs / R)c^2dt^2 + ((1 - Rs / R)^-1)dR^2 + R^2(θ^2 + sinθ^2dΦ^2)
(1 - Rs / R) < 1, so multiplying anything times it will give you a smaller number. So I understand the length contraction part of it, where R is the distance seen by the observer due to gravitational length contraction, but the proper length is longer so we divide to get a larger number. What about time though, shouldn't dt < dτ? because time slows down due to gravity. Why isn't (1 - Rs / R) being divided by time? Thanks
My second question is about how the metric expresses time dilation and length contraction.
c^2dτ^2 = -(1 - Rs / R)c^2dt^2 + ((1 - Rs / R)^-1)dR^2 + R^2(θ^2 + sinθ^2dΦ^2)
(1 - Rs / R) < 1, so multiplying anything times it will give you a smaller number. So I understand the length contraction part of it, where R is the distance seen by the observer due to gravitational length contraction, but the proper length is longer so we divide to get a larger number. What about time though, shouldn't dt < dτ? because time slows down due to gravity. Why isn't (1 - Rs / R) being divided by time? Thanks