Question on Definition of Fourier Transform

nickmai123
Messages
78
Reaction score
0
I have a question, specifically to physics people, on their definition of the Fourier Transform (and its inverse by proxy). I'm an EE and math person, so I've done a lot of analysis of (real/complex) and work with (signal processing) the transform.

In a physics class I'm taking, the professor defined the transform with the negative signs in the forward and reverse kernels flipped; this is against any and all known conventions that I'm aware of. Theoretically, it doesn't make a difference since its a simple substitution, but in practice, it causes really screws things up like using an FFT function built into MATLAB and Mathematica. Also, the tables of transforms and properties are all flipped around.

That is, in the physics class, the forward (and reverse) transforms are as follows:

\mathcal{F}\left\{x\left(t\right)\right\}(f) = X\left(f\right) = \int_{-\infty}^{\infty}x\left(t\right)e^{j2\pi f t}dt

\mathcal{F}^{-1}\left\{X\left(f\right)\right\}(t) = x\left(t\right) = \int_{-\infty}^{\infty}X\left(f\right)e^{-j2\pi f t}df

Is there a reason for this? I can't think of a physical situation where defining the transforms as such is more advantageous than the generally accepted formulas.
 
Mathematics news on Phys.org
There is no reason. Which has + and which has - in the exponent is purely a matter of convention. You might ask your professor why he switched - it may have been an oversight. You should bring up the possible problems with MATLAB and Mathematica.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top