yungman
- 5,741
- 294
\vec r = \hat x x + \hat y y + \hat z z \;\Rightarrow \;r = \sqrt { x^2+y^2+z^2} \;,\, \hat r= \frac { \hat x x + \hat y y + \hat z z}{ r}
I want to find the dot product (\hat x -\hat r \frac x r) \cdot (\hat x -\hat r \frac x r)
1) \hat x -\hat r \frac x r = \hat x - \frac { (\hat x x + \hat y y + \hat z z) x }{ r^2} = \frac { \hat x (y^2+z^2) - \hat y xy - \hat z xz}{r^2} \;\Rightarrow\; (\hat x -\hat r \frac x r) \cdot (\hat x -\hat r \frac x r) = \frac {(y^2+z^2)^2+x^2y^2+x^2z^2}{r^4}= \frac {(y^2+z^2)(x^2+y^2+z^2)}{r^4}=\frac {(y^2+z^2)}{r^2}
2) But if I just blind do the dot product:
(\hat x -\hat r \frac x r) \cdot (\hat x -\hat r \frac x r) = 1 + \frac {x^2}{r^2}
Here, all I did is \hat x \cdot \hat x \;\hbox { and } \hat r \cdot \hat r.
Is it true for dot product, only independent variable can dot together, \hat r is a dependent variable of \hat x so I cannot use the 2) method to perform dot product. Is this true?
Thanks
Alan
I want to find the dot product (\hat x -\hat r \frac x r) \cdot (\hat x -\hat r \frac x r)
1) \hat x -\hat r \frac x r = \hat x - \frac { (\hat x x + \hat y y + \hat z z) x }{ r^2} = \frac { \hat x (y^2+z^2) - \hat y xy - \hat z xz}{r^2} \;\Rightarrow\; (\hat x -\hat r \frac x r) \cdot (\hat x -\hat r \frac x r) = \frac {(y^2+z^2)^2+x^2y^2+x^2z^2}{r^4}= \frac {(y^2+z^2)(x^2+y^2+z^2)}{r^4}=\frac {(y^2+z^2)}{r^2}
2) But if I just blind do the dot product:
(\hat x -\hat r \frac x r) \cdot (\hat x -\hat r \frac x r) = 1 + \frac {x^2}{r^2}
Here, all I did is \hat x \cdot \hat x \;\hbox { and } \hat r \cdot \hat r.
Is it true for dot product, only independent variable can dot together, \hat r is a dependent variable of \hat x so I cannot use the 2) method to perform dot product. Is this true?
Thanks
Alan