- #1
- 5,697
- 238
I am confused with this part of "Introduction to Electrodynamics" 3rd edition by Dave Griffiths.
On page 367, the traveling wave is represented by:
[tex] f(z,t)\;=\; A cos[k(z-vt) \;+\; \delta] [/tex] 9.7
Where v is velocity and [itex]kv=\omega[/itex]. This give:
[tex] f(z,t)\;=\; A cos[kz \;-\;\omega t \;+\; \delta] \;\hbox { for forward moving wave and }[/tex] 9.12
[tex] f(z,t)\;=\; A cos[kz \;+\;\omega t \;-\; \delta] \;\hbox { for backward moving wave and }[/tex] 9.13
[tex]f(z,t) \;=\; Re[A e^{i(kz-\omega t + \delta)} ] \;\hbox { and }[/tex] 9.16
[tex]\tilde{f}(z,t) \;=\; \tilde{A}e^{i(kz-\omega t )}[/tex] 9.17
I have no problem with 9.16 because the real part is cosine and it is an even function. The convension way is always written like:
[tex]f(z,t) \;=\; Re[A e^{i(\omega t \;-\;kz \;+\; \delta)}][/tex]
I have issue with 9.17 because this is not just the real part.
[tex] e^{i (kz-\omega t) } = cos (kz\;-\;\omega t) \;+\; i sin (kz\;-\;\omega t) \;\hbox { which is not the same as } \;e^{i (\omega t \;-\; kz) } \;=\; cos (\omega t \;-\; kz) \;+\; i sin (\omega t \;-\;kz) [/tex]
The sine portion has opposite sign.
Then on P384 section 9.3.2 , the book give the equation of the incident electric wave and reflected electric wave :
[tex] \tilde { E} _I(z,t) \;=\; \hat x \tilde {E}_{0_I} e^{i(kz-\omega t)} \;\hbox { and }[/tex] 9.75
[tex] \tilde { E} _R(z,t) \;=\; \hat x \tilde {E}_{0_R} e^{i(-kz-\omega t)} [/tex] 9.76
I have issue with 9.76 because this is not just the real part.
[tex] e^{i (-kz-\omega t) } = cos (kz\;+\;\omega t) \;-\; i sin (kz\;+\;\omega t) \;\hbox { which is not the same as } \;e^{i (kz\;+\;\omega t) } \;=\; cos (kz\;+\;\omega t) \;+\; i sin (kz\;+\;\omega t) [/tex]
Something is wrong on the equation of the reflected wave. But This book have no error that I can find so far, so what did I do wrong? Please help.
Thanks
Alan
On page 367, the traveling wave is represented by:
[tex] f(z,t)\;=\; A cos[k(z-vt) \;+\; \delta] [/tex] 9.7
Where v is velocity and [itex]kv=\omega[/itex]. This give:
[tex] f(z,t)\;=\; A cos[kz \;-\;\omega t \;+\; \delta] \;\hbox { for forward moving wave and }[/tex] 9.12
[tex] f(z,t)\;=\; A cos[kz \;+\;\omega t \;-\; \delta] \;\hbox { for backward moving wave and }[/tex] 9.13
[tex]f(z,t) \;=\; Re[A e^{i(kz-\omega t + \delta)} ] \;\hbox { and }[/tex] 9.16
[tex]\tilde{f}(z,t) \;=\; \tilde{A}e^{i(kz-\omega t )}[/tex] 9.17
I have no problem with 9.16 because the real part is cosine and it is an even function. The convension way is always written like:
[tex]f(z,t) \;=\; Re[A e^{i(\omega t \;-\;kz \;+\; \delta)}][/tex]
I have issue with 9.17 because this is not just the real part.
[tex] e^{i (kz-\omega t) } = cos (kz\;-\;\omega t) \;+\; i sin (kz\;-\;\omega t) \;\hbox { which is not the same as } \;e^{i (\omega t \;-\; kz) } \;=\; cos (\omega t \;-\; kz) \;+\; i sin (\omega t \;-\;kz) [/tex]
The sine portion has opposite sign.
Then on P384 section 9.3.2 , the book give the equation of the incident electric wave and reflected electric wave :
[tex] \tilde { E} _I(z,t) \;=\; \hat x \tilde {E}_{0_I} e^{i(kz-\omega t)} \;\hbox { and }[/tex] 9.75
[tex] \tilde { E} _R(z,t) \;=\; \hat x \tilde {E}_{0_R} e^{i(-kz-\omega t)} [/tex] 9.76
I have issue with 9.76 because this is not just the real part.
[tex] e^{i (-kz-\omega t) } = cos (kz\;+\;\omega t) \;-\; i sin (kz\;+\;\omega t) \;\hbox { which is not the same as } \;e^{i (kz\;+\;\omega t) } \;=\; cos (kz\;+\;\omega t) \;+\; i sin (kz\;+\;\omega t) [/tex]
Something is wrong on the equation of the reflected wave. But This book have no error that I can find so far, so what did I do wrong? Please help.
Thanks
Alan