Question on Time-independent perturbation theory: I am confused

ani4physics
Messages
29
Reaction score
0
We all know from time-independent perturbation theory that if we have an atom in ground state [0>, and when a time-independent perturbation acts on it, the energy of the ground state gets shifted and the ground state wave function also gets modified. Using Time-independent Schroedinger eq.,

[H0 + lambda . V] [0> = [E0] [0>, where V is the perturbation hamiltonian.

Now we expand E0 as E0 = E0(0) + lambda . E0(1) + lambda^2. E0(2) +...
and [0> as [0> = [0>(0) + lambda. [0>(1) + lambda^2. [0>(2) + ...

Then we compare powers of lambda, left multiply with <0] to get the energy corrections and so on.

My question is, is the average energy of the atom E0 = E0(0) + E0(1) + E0(2) + ...

or is it [<0](0) + <0](1) + <0](2) + ...] [ H0 + lambda V] [[0>(0) + [0>(1) + [0>(2) + ...]

Which one is it? They give different result.
 
Physics news on Phys.org
They shouldn't be different to the order you calculated the wavefunction. However, it is a general theorem that the wavefunction of order n is sufficient to calculate the energy to order 2n+1 with the second formula you gave.
 
DrDu said:
They shouldn't be different to the order you calculated the wavefunction. However, it is a general theorem that the wavefunction of order n is sufficient to calculate the energy to order 2n+1 with the second formula you gave.

Yeah I was hoping they should be equal. But in the second formula we get terms like <0(1)] H0 [0(1)>, which do not appear in the equation E = E0(0) + E0(1) + E0(2) +..., because

E0(2) = <0] V [0(1)>
 
Be carefull, because your original wavefunction and the perturbed wavefunction do not have the same norm, i.e., although you may chose <0][sum_n O(n)>=1, <sum_n O(n)][sum_n O(n)> >1. That is you have to divide your last formula in #1 by <sum_n O(n)][sum_n O(n)>.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top