Question regarding a Newtonian equation modification

  • Thread starter Thread starter TRB8985
  • Start date Start date
  • Tags Tags
    Newtonian
AI Thread Summary
The discussion centers on the modification of Newton's gravitational force equation, specifically the idea of replacing the one-dimensional distance (r) with a more complex distance formula incorporating time (ct). The original poster questions whether this adjustment would provide a more accurate representation of gravitational interactions in three-dimensional space. Responses clarify that while the proposed formula is mathematically interesting, using r is more practical and generalizable across different coordinate systems, such as Cartesian, spherical, or cylindrical. The consensus suggests that the simplicity of the original equation is preferable for its ease of use in various contexts. Overall, the conversation highlights the balance between theoretical exploration and practical application in physics.
TRB8985
Messages
74
Reaction score
15
Good afternoon all,

I'm going to sound like a blithering idiot in attempting to describe my question, so please forgive me. I appreciate your patience.

While working on problems in the gravitation chapter in my college physics textbook, I came across a very interesting situation that I don't have the expertise to reconcile, nor can easily find a solution to on Google. It isn't with a particular problem, but rather with the concept of blending a Newtonian and relativistic concept.

Take, for example, the familiar equation for computing the gravitational force between two objects: Gmm'/r^2.

My question is this:

Since distances between two objects are 3D vectors in "real" space, wouldn't it be more accurate to replace a one-dimensional length (like r) with something more akin to sqrt(x^2 + y^2 + z^2 + ct^2)? Thereby making the equation:

Gmm'/(sqrt(x^2 + y^2 + z^2 + ct^2))^2

I get the feeling that these two concepts may be extremely distant from one another in usability like that, but I'm unfortunately unable to reach any of my professors over the summer and can't speak to someone who would actually know better.

Thank you for your time. Enjoy the holiday weekend.
 
Physics news on Phys.org
First: why the ct term? In relativity, this term is negative, but for Newtonian physics, I'm not sure why you put that in. Regardless, using r instead of the distance formula is more generalized. It's independent of the coordinate system that you choose. Sure, it works if you're in 3-D Cartesian coordinates where you have x, y, and z coordinates, but what if you're in spherical coordinates, where you represent a point using a radius and two angles? Or cylindrical coordinates, where you represent a point using a radius, an angle, and a height?

The point is: using r is better, because it's more general. In order to use the distance formula, we would need to know the Cartesian coordinates of the point. If we're working in spherical or cylindrical coordinates, then we would have to convert the points to Cartesian to use the formula. We don't have to do that if we use r, as r is just a generalized distance between the two points.
 
Technically it would be the square root of ((x2-x1)^2 + (y2-y1)^2...

This gives you the distance r, and the formula is so basic that you don't need to include it in the gravitational force equation.
 
I agree
TRB8985 said:
Since distances between two objects are 3D vectors in "real" space, wouldn't it be more accurate to replace a one-dimensional length (like r) with something more akin to sqrt(x^2 + y^2 + z^2 + ct^2)? Thereby making the equation:
It not one dimensional because its r^2
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top