yungman
- 5,741
- 294
In the prove of \vec{r}(t) \;&\; \vec{r}'(t) \; is perpendicular:
\vec{r}(t) \;\cdot\; \vec{r}(t) \;=\; |\vec{r}(t)|^2 \;\Rightarrow\; \frac{d}{dt}[ \vec{r}(t) \;\cdot\; \vec{r}(t)] = \vec{r}(t) \;\cdot\; \vec{r}'(t) + \vec{r}(t) \;\cdot\; \vec{r}'(t) = \frac{d}{dt}[ |\vec{r}(t)|^2]
The book claimed since \; |\vec{r}(t)|^2 \; is a constant, \frac{d}{dt}[ |\vec{r}(t)|^2] = 0.
Question is why \; \frac{d}{dt}[ |\vec{r}(t)|^2] = 0\;? Let \; \vec{r}(t) = x\hat{x} + y\hat{y}
\; \frac{d}{dt}[ |\vec{r}(t)|^2] = x^2 + y^2\;
x and y is not a constant! Why \; |\vec{r}(t)|^2 \; is a constant?!
\vec{r}(t) \;\cdot\; \vec{r}(t) \;=\; |\vec{r}(t)|^2 \;\Rightarrow\; \frac{d}{dt}[ \vec{r}(t) \;\cdot\; \vec{r}(t)] = \vec{r}(t) \;\cdot\; \vec{r}'(t) + \vec{r}(t) \;\cdot\; \vec{r}'(t) = \frac{d}{dt}[ |\vec{r}(t)|^2]
The book claimed since \; |\vec{r}(t)|^2 \; is a constant, \frac{d}{dt}[ |\vec{r}(t)|^2] = 0.
Question is why \; \frac{d}{dt}[ |\vec{r}(t)|^2] = 0\;? Let \; \vec{r}(t) = x\hat{x} + y\hat{y}
\; \frac{d}{dt}[ |\vec{r}(t)|^2] = x^2 + y^2\;
x and y is not a constant! Why \; |\vec{r}(t)|^2 \; is a constant?!