Beam of photons...
For a pure beam, all photons are in a single quantum state (a vector in hilbert space). For a mixture, they are, well, coming in a statistical mixture of different pure states (although this expression, by itself, needs some caveats - but not all difficulties at once

)
The point is that observational differences between different "states" are only visible when doing statistical measurements on a big number of "identical" systems. So we're talking here about the observational difference between the components of an entangled system (read: on a whole series of such systems, or a beam of such particles in this case), and those that aren't.
The bigger the number of entangled components, the harder it is to find correlations between observations which are different from those of a classical statistical mixture BUT how more striking and puzzling they are when they are observed!
Several specimen in different states, arriving one after the other at the measurement, randomly mixed.
Quantum theory's only reason of existence is that there are states in nature which seem to be DIFFERENT from simple statistical mixtures, so the "quantum-ness" of an observation is the difference between such mixture and the quantum predictions.
In short: there's a difference between the quantum state:
|psi> = |a> + |b> - which is a pure state on one hand (sheer "quantumness")
and:
a statistical mixture of 50% of things coming in in state |a> and 50% of things coming in in state |b>.
But you only see the difference if you do 2 things:
1) you do observations on MANY of these "identical" systems
2) you look at the right quantities. For instance: if you look at a property which is determined by state |a> or by state |b> (in other words, if |a> and |b> are eigenvectors of the measurement operator), both cases 1) and 2) will give identical results. IOW, we haven't seen any "quantum effect" when doing that. However, if you look at a quantity which is determined by |c> and |d>, where |c> = |a> + |b> and |d> = |a> - |b>, you WILL see a difference: in case 1), in 100% of the cases, you will see the c-property and never the d-property ; while in case 2), you will find 50% of c-property and 50% of d-property.
It is in this kind of case, where you find a difference between a pure state and a statistical mixture, that you can say you have observed a "quantum effect" or "quantum interference" or something of the kind.
Well, in the case of entangled systems, these observations showing such effects need to be measurements on ALL components of the entangled system: if you miss one, it turns out like if it were a statistical mixture. IF you observe them, they are very puzzling. But if the entanglement is too complicated, you always leave out one necessary measurement on some part of the system, and hence you don't see any quantum effect: everything behaves as a mixture. So although there "are" very puzzling quantum effects to be potentially observed, you can never actually do so when there is entanglement with the environment ; and hence things appear to be "just statistical mixtures" with no quantum effects per se. This is the essential idea of decoherence theory.
No, that's not what I'm saying. I'm saying that in entangled systems, one needs observables which observe ALL of the components before we can find specific "quantum correlations". If we leave one out, we won't see it. And in a complicated system, we will almost always miss one, so we'll never OBSERVE the correlations.
There IS (according to decoherence) entanglement in the sense of the EPR pair, only, one part of the pair is unobservable. And if you only look at ONE PART of the EPR pair, it doesn't look particularly correlated with anything: it shows up as a mixture.
Now, in the case of an EPR pair, we can go and do observations on the single other partner in the entanglement, and find amazing correlations. But if it is not a pair, but a billion-some, then there will always be one partner that escapes observation. And it is only on the total set of observations that a correlation (an amazing correlation) is visible. On any subset of observations, the entangled state appears as a mixture.