Quick question about a train/car problem

  • Thread starter Thread starter imagiro1
  • Start date Start date
AI Thread Summary
A user is trying to solve a problem where a car traveling at 95 km/h is 100 meters behind a truck moving at 75 km/h. They initially use the wrong formula for position but later correct it to X = Xo + Vot, recognizing that the acceleration is zero. The key point is to set the initial position of the car at -100 meters relative to the truck. After adjustments, they find the correct time for the car to reach the truck is 20 seconds. The discussion also emphasizes understanding the underlying mathematics of physics for better problem-solving.
imagiro1
Messages
5
Reaction score
0
I got a few problems like this one. The only thing I can't figure out is where to put the km. Here's what I got. A car traveling 95km/hr is 100m behind a truck traveling 75km/h. How long will it take the car to reach the truck. My 2 formulas are:

X=Xo+Vo+(1/2)at2
Car: X=95t2
Truck: X=75t2

Put both formulas equal to each other and solve for t. But where do I plug in the 100m that the car is behind? Thanks.
 
Physics news on Phys.org
Welcome to PF!

Hi imagiro1! Welcome to PF! :smile:
imagiro1 said:
X=Xo+Vo+(1/2)at2
Car: X=95t2
Truck: X=75t2

Nooo :cry:

i] it's X=Xo+Vot+(1/2)at2

ii] a (the acceleration) is obviously zero, isn't it?
Put both formulas equal to each other and solve for t. But where do I plug in the 100m that the car is behind? Thanks.

iii] that would be the Xo (a different one for each vehicle, of course) :wink:
 
I forgot that t, I swear I got it on paper.

I ended up with Xc=.110+95t and Xt=75t, which gave me the right answer, but negative. I tried it again with Xc=95t and Xt=.110-75t and it gave me the 20 sec which is the answer.

If I change it to -.110 would that be the same thing as saying the car is .110km behind the truck?
 
imagiro1 said:
I ended up with Xc=.110+95t and Xt=75t, which gave me the right answer, but negative. …

The car is 100m behind the truck …

so if the truck is at position 0 at time 0 (consistent with Xt = 75t), then the car is at position -100 at time 0, so Xc = … ? :smile:
 
-.110+95t. Awesome. Thanks for the help. I'm sure I'll be back later.
 
Imagiro, all tiny tim said is perfect but for further progresses I may suggest to try to see deeper into the methematics behind physics. I mean x=x0+v0t+1/2at^2 is not just a recipt where you input some data and it gives you another, certainly it can do so, but it is just its most superficial use. Cinematics, at the level that you are working (about the one the problem is), can be fully understood by learning and catching the basic calculus (functions, derivatives and integrals, in general).

Then, once you regard space and time as variables in a "calculus" way, you'll have no problem in solving problems like this and a lot more complicated that you never expected, even trying, before.

That's my advice, HOPE it's usefull.

Good night and good science :biggrin:
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top