mmzaj said:
i have come to find that
(\frac{f}{g})^{(n)}=\frac{1}{g} \sum^{n}_{k=0} (-1)^k (^{n+1}C_k) \frac{(fg^{k})^{(n)}}{g^{k}}
but again , this isn't easier to evaluate since we need to expand the term (fg^{k})^{(n)} using both leibniz rule and Faà di Bruno's formula !
Ok here's a proof of the formula though it only verifies the formula (doesn't show how it was derived).
Moving all terms to the LHS and substituting u=f/g, we need to show that
\sum_{k=0}^{n+1}(-1)^k (^{n+1}C_k) g^{n+1-k}(g^ku)^{(n)} = 0
for all g and u. Expanding the product derivative, we need to show that
\sum_{k=0}^{n+1}(-1)^k (^{n+1}C_k) g^{n+1-k}(g^k)^{(j)} = 0
for all g and all j<=n. This can be proved in two ways.
First, using Faa di Bruno's formula, the LHS is
\sum_{k=0}^{n+1}\sum_{i=0}^{\min(j,k)} (-1)^k (^{n+1}C_k) g^{n+1-k} \frac{k!}{(k-i)!}g^{k-i}B_{j,i}(g',...)
=\sum_{i=0}^{j}\sum_{k=i}^{n+1} (-1)^k (^{n+1}C_k)\frac{k!}{(k-i)!}g^{n+1-i}B_{j,i}(g',...)
The sum over k is
\sum_{k=i}^{n+1}(-1)^k (^{n+1}C_k)\frac{k!}{(k-i)!} = (^{n+1}C_i)(-1)^i i!\sum_{k=0}^{n+1-i}(-1)^k(^{n+1-i}C_k) = (1-1)^{n+1-i} = 0
as required. For an alternative proof using induction, we use
g^m(g^k)^{(j)} = (g^{k+m})^{(j)} - \sum_{h=1}^m\sum_{i=1}^j g^{m-h}(^jC_i)g^{(i)}(g^{k+h-1})^{(j-i)}
so the LHS is
\sum_{k=0}^{n+1}(-1)^k(^{n+1}C_k)\left((g^{n+1})^{(j)}-\sum_{h=1}^{n+1-k}\sum_{i=1}^j (^jC_i)g^{n+1-k-h}g^{(i)}(g^{k+h-1})^{(j-i)}\right)
The first term is zero (binomial expansion of (1-1)^{n+1}) and the second term is zero if
\sum_{k=0}^n \sum_{h=1}^{n+1-k}(-1)^k(^{n+1}C_k)g^{n+1-k-h}(g^{k+h-1})^{(j-i)}=0
whenever (j-i)<n (the sum has no terms when k=n+1). Substituting m=k+h-1, the sum is
\sum_{m=0}^n \sum_{k=0}^m (-1)^k (^{n+1}C_k)g^{n-m}(g^m)^{(j-i)} = \sum_{m=0}^n (-1)^m (^nC_m) g^{n-m}(g^m)^{(j-i)}
which is true by induction on n (the case n=1 is easily verified).
That proof was horribly complicated so it would be good to see an intuitive derivation.