Zaknife
- 10
- 0
Homework Statement
Consider a Wavefunction:
\psi(x,y,z)=K(x+y+x^2-y^2)e^{-r/a}
Find expectation value of L^{2} , L_{z}^{2}, L_{x}^{2}.
Homework Equations
The Attempt at a Solution
The first step would be a rewriting a wavefunction in terms of spherical coordinates:
\psi=Kr(\cos\phi \sin \theta + 2 \sin \phi \cos \theta +r(\cos^{2} \phi \sin^{2} \theta - \sin^{2} \phi \sin^{2} \theta ))
My Question is : is it fair to skip the radial part and just forget about it. Normalize the Wavefunction for just the angular part , and then consider a mean values of Angular Momentum Operators ? Or should i normalize the wavefunction including r ? It bothers me because of the r squared in the equation.